Главная > Руководство к решению задач по теоретической механике
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава V. ПРИНЦИП ДАЛАМБЕРА И ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ

§ 1. ПРИНЦИП ДАЛАМБЕРА ДЛЯ СИСТЕМЫ МАТЕРИАЛЬНЫХ ТОЧЕК

Если к каждой материальной точке движущейся системы приложить силу инерции этой точки, то все эти силы инерции будут уравновешиваться заданными силами и реакциями связей, приложенными к данной системе. В этом и состоит сущность принципа Даламбера для системы.

Таким образом, если заданную силу, приложенную к -той точке механической системы, состоящей из материальных точек, обозначим , реакцию связей, приложенную к той же точке, обозначим и силу инерции этой точки , то имеем:

При этом

т. е. сила инерции материальной точки равна по модулю произведению массы этой точки на ее ускорение и направлена противоположно этому ускорению.

Отсюда следует, что система заданных сил, реакций связей и сил инерции удовлетворяет уравнениям статики, т. е. сумма проекций всех этих сил на любую ось и сумма их моментов относительно любой точки или любой оси равна нулю.

Таким образом, принцип Даламбера дает общий прием составления уравнений, необходимых для решения задачи динамики системы, причем эти уравнения имеют ту же форму, что и уравнения статики. Этот прием оказывается особенно полезным при решении тех задач, в которых требуется найти динамические реакции связей, т. е. реакции, возникающие при движении системы.

Задачи, относящиеся к этому параграфу, можно разделить на два основных типа:

I. Задачи, в которых силы, приложенные к каждому телу системы (заданные силы и реакции связей), и силы инерции, их уравновешивающие, лежат в одной плоскости.

II. Задачи, в которых заданные силы, реакции связей и силы инерции, их уравновешивающие, образуют пространственную систему сил.

Задачи типа I

Так как в задачах этого типа рассматривается плоская система сил (заданные силы, реакции связей и силы инерции), находящихся в равновесии, то применяем три уравнения плоской статики - два уравнения проекций и одно уравнение моментов.

В частных случаях будем иметь только два из этих уравнений: два уравнения проекций (в случае сходящихся сил) или одно уравнение проекций и одно уравнение моментов (в случае параллельных сил).

Если в задаче имеется система, состоящая из двух или нескольких тел, то приходится, расчленив эту систему, составлять уравнения равновесия для каждого тела в отдельности, совершенно так же, как в статике.

Задачи типа I можно разделить на три группы.

1
Оглавление
email@scask.ru