Главная > Руководство к решению задач по теоретической механике
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 4. ОПРЕДЕЛЕНИЕ УСКОРЕНИЙ ТОЧЕК ПЛОСКОЙ ФИГУРЫ

(задачи 557—578)

Ускорение любой точки движущейся плоской фигуры можно определить двумя способами: 1) как геометрическую сумму ускорений этой точки в поступательном и вращательном движениях фигуры и 2) как ускорение этой точки во вращательном движении вокруг мгновенного центра ускорений, причем мгновенным центром ускорений называется такая точка Плоской фигуры, ускорение которой в данный момент равно нулю.

Если известны ускорение некоторой точки А фигуры (ускорение полюса), а также угловая скорость и угловое ускорение фигуры, то ускорение любой ее точки В определяется по формуле

Здесь вектор - ускорение точки В во вращательном движении вокруг полюса касательная и нормальная составляющие этого ускорения.

Следовательно,

при этом вектор направлен вдоль АВ (от точки В к точке А), а вектор перпендикулярен к АВ.

Угол между векторами и ВА определяется по формуле

при этом в случае ускоренного вращения фигуры векторы (вращательная скорость точки В вокруг полюса А) лежат по одну сторону от прямой АВ, в противном случае эти векторы расположены по разные стороны от этой прямой.

Если угловая скорость фигуры постоянна, т. е. , то , а следовательно, и , т. е. вектор совпадает по направлению с вектором ВА. Если же в данный момент , то и вектор перпендикулярен к вектору ВА.

На основании равенства (78) ускорение точки В можно найти построением многоугольника ускорений и применением затем метода проекций, спроектировав векторное равенство (78) на выбранные оси.

Если мгновенный центр ускорений Q принять за полюс, то для ускорения произвольно выбранной точки М фигуры имеем:

но , а потому

т. e. ускорение любой точки М плоской фигуры определяется как ускорение во вращательном движении вокруг мгновенного центра ускорений (рис. 108).

При этом ускорение направлено по прямой MQ от точки М к центру Q, а ускорение перпендикулярно к MQ и

Ускорение точки М равно по модулю

и составит с направлением MQ угол

(84)

Отсюда следует: 1) угол а для всех точек фигуры имеет в данный момент одно и то же значение; 2) ускорения точек плоской фигуры пропорциональны расстояниям этих точек от мгновенного центра ускорений.

Чтобы определить для данного момента положение мгновенного центра ускорений нужно:

1) найти ускорение какой-либо точки А фигуры [обычно при решении задач рассматриваемого типа ускорение одной точки фигуры (механизма) или задается, или его можно легко найти];

2) повернуть полупрямую, по которой направлен вектор , вокруг точки А на острый угол или в направлении вращения фигуры, если это вращение является ускоренным, или в противоположном направлении в противном случае;

3) на полученной после этого поворота полупрямой отложить отрезок

Отметим два частных случая:

1) пусть , тогда , следовательно, ускорение любой точки М движущейся фигуры направлено , т. е. проходит через центр Q. Поэтому мгновенный центр ускорений Q в этом случае можно найти как точку пересечения прямых, по которым направлены ускорения двух каких-либо точек фигуры;

2) пусть , тогда следовательно, ускорение любой точки М фигуры перпендикулярно к MQ. Поэтому мгновенный центр ускорений Q в этом случае можно найти как точку пересечения перпендикуляров, восставленных из двух каких-либо точек движущейся фигуры к ускорениям этих точек.

Рис. 108.

Задачи, относящиеся к этому параграфу, можно разделить на следующие четыре группы:

1) задачи, в которых заданы векторы скорости и ускорения одной точки и прямолинейная траектория второй точки плоской фигуры, ускорение которой требуется найти (задачи 566—571, 573—579);

2) задачи, в которых заданы векторы скорости и ускорения одной точки и криволинейная траектория второй точки плоской фигуры, ускорение которой требуется найти (задачи 572, 573, 575);

3) задачи, в которых требуется определить ускорение точки катящегося без скольжения колеса (задачи 556—563);

4) задачи, в которых заданы ускорения двух точек плоской фигуры, а требуется определить ускорение третьей точки этой фигуры (задачи 564, 574, 576—578).

1
Оглавление
email@scask.ru