Главная > Руководство к решению задач по теоретической механике
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 2. ТЕОРЕМА О МОМЕНТЕ КОЛИЧЕСТВА ДВИЖЕНИЯ

Момент количества движения материальной точки относительно некоторого центра О равен векторному произведению радиуса-вектора движущейся точки на количество движения , т. е.

Очевидно, что модуль момента количества движения равен

где - плечо вектора v относительно центра О (рис. 167).

Проектируя векторное равенство (153) на координатные оси, проходящие через центр О, получаем формулы для моментов количества движения материальной точки относительно этих осей:

В векторной форме теорема о моменте количества движения выражается так: производная по времени от момента количества движения материальной точки относительно какого-либо неподвижного центра О равна моменту действующей силы относительно того же центра, т. е.

Проектируя векторное равенство (156) на какую-либо из координатных осей, проходящих через центр О, получаем уравнение, выражающее ту же теорему в скалярной форме:

т. е. производная по времени от момента количества движения материальной точки относительно какой-либо неподвижной оси равна моменту действующей силы относительно той же оси.

Рис. 167.

Рис. 168.

Эта теорема имеет большое значение при решении задач в случае движения точки под действием центральной силы Центральной силой называется такая сила, линия действия которой все время проходит через одну и ту же точку, называемую центром этой силы. Если материальная точка движется под действием центральной силы F с центром в точке О, то

и, следовательно, . Таким образом, момент количества движения в данном случае остается постоянным по модулю и по направлению. Отсюда следует, что материальная точка под действием центральной силы описывает плоскую кривую, расположенную в плоскости, проходящей через центр силы.

Если известна траектория, которую описывает точка под действием центральной силы, то, пользуясь теоремой о моменте количества движения, можно найти эту силу как функцию расстояния от точки до центра силы.

Действительно, так как момент количества движения относительно центра силы остается постоянным, то, обозначая h плечо вектора относительно центра силы, имеем:

(158)

Для определения этой постоянной должна быть известна скорость точки в каком-либо месте траектории. С другой стороны, имеем (рис. 168):

где - радиус кривизны траектории, — угол между радиусом-вектором точки и касательной к траектории в этой точке.

Отсюда

Итак, имеем два уравнения (158) и (159) с двумя неизвестными v и F; остальные величины, входящие в эти уравнения, т. е. , являясь элементами заданной траектории, легко могут быть найдены. Таким образом, можно найти v и F как функции .

Пример 129. Точка М описывает эллипс под действием центральной силы F (рис. 169). Скорость в вершине А равна . Найти скорость в вершине В, если и .

Рис. 169.

Решение. Так как в данном случае

Пример 130. Точка М массы описывает окружность радиуса а, притягиваясь точкой А этой окружности (рис. 170).

В начальный момент точка находится в положении В и имеет скорость . Определить скорость v точки и силу притяжения F как функции радиуса-вектора .

Решение. Так как , то

следовательно,

откуда

Но из рисунка имеем:

откуда , поэтому и следовательно, .

Рис. 170.

Силу F находим, пользуясь уравнением (159):

отсюда

1
Оглавление
email@scask.ru