Главная > Курс теории упругости (Тимошенко С.П.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 22. Однозначность решения

Когда дифференциальные уравнения теории упругости установлены, приходится решать для них два основных вопроса: вопрос о существовании решения для составленной системы уравнений и вопрос об однозначности решения Что касается первого вопроса, то он имеет чисто математический характер. Задача о существовании интеграла для дифференциальных уравнений теории упругости до сих пор не вполне разрешена и мы этого вопроса в дальнейшем касаться не будем

Однозначность решения уравнений теории упругости для случая тел с односвязным контуром была впервые доказана Кирхгофом 2. Будем исходить при доказательстве из представления о естественном состоянии упругого тела. Если на элементы тела не действуют никакие объемные силы, а также не приложено никаких усилий к поверхности тела, то тело не испытывает никаких деформаций и все внутренние напряжения равны нулю. Предположим, что при заданных объемных силах и данных усилиях на поверхности дифференциальные уравнения равновесия (3) имеют два решения. Пусть представляет систему напряжений, соответствующих первому решению, и второму. Составим разности Они представят собой систему напряжений удовлетворяющих уравнениям

и условиям на поверхности

Напряжения эти, как следует из понятия о естественном состоянии упругого тела, равны нулю. Следовательно, системы напряжений

тождественны, и уравнения (3) при заданных внешних силах допускают лишь одно решение.

Этот вывод основан на принципе сложения действия сил и предположении, что перемещения, обусловленные деформацией тела, не оказывают влияния на действие внешних сил. В тех случаях, когда принцип сложения действия сил не применим, одной и той же системе сил может соответствовать несколько различных форм равновесия. Эти вопросы будут рассмотрены ниже в связи с задачами об устойчивости различных форм равновесия упругого тела.

В случаях, когда тело ограничено многосвязным контуром, доказательство однозначности решения уравнений теории упругости, основанное на представлении о естественном состоянии упругого тела теряет силу, и мы будем, вообще говоря, получать многозначные решения. Физический смысл этого заключения выясним на простейшем примере. Возьмем случай кольца. Одним плоским разрезом мы можем обратить кольцо в тело с односвязным контуром. В таком теле при определенных внешних силах возникают вполне определенные напряжения и деформации. Если мы удалим внешние силы, напряжения и деформации пропадут, тело вернется к своему естественному состоянию. Удалим посредством плоского сечения тонкий слой материала кольца у места разреза. Тогда концы разрезанного кольца не будут совпадать друг с другом при отсутствии внешних сил; мы сможем привести их к соприкасанию, лишь приложив внешние силы. Предположим, что мы достигли таким путем соприкасания и скрепили (склеили, спаяли) между собой поверхности, соответствующие месту разреза, тогда по удалении внешних сил в кольце останутся напряжения, величина которых будет зависеть от того, какая часть материала кольца была удалена у места разреза. Напряжения эти, возникающие, как мы видим, в телах с многосвязным контуром, при изготовлении называют самонапряжениями или начальными напряжениями. Они именно и обусловливают многозначность решений уравнений теории упругости в случае многосвязных контуров

На практике начальные напряжения играют весьма существенную роль, но их редко удается учесть аналитически, так как обыкновенно нет точных данных относительно тех условий, благодаря которым начальные напряжения возникли.

1
Оглавление
email@scask.ru