Главная > Сопротивление материалов (Работнов Ю.Н.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 182. Теория прочности Мора.

Согласно этой теории нарушение прочности происходит тогда, когда на некоторой площадке осуществляется наиболее неблагоприятная комбинация нормального и касательного напряжений.

В первоначальной формулировке теории Мора вопрос о характере разрушения остается открытым; в зависимости от того, какой будет эта неблагоприятная комбинация, речь может идти о наступлении текучести или о разрушении в прямом смысле слова. Запишем условие прочности по Мору следующим образом:

(182.1)

В плоскости это уравнение изображается некоторой кривой (рис. 265). Для суждения о прочности необходимо рассмотреть всевозможные площадки, проходящие через данную точку, и проверить, будет ли выполнено равенство (182.1) хотя бы на одной из них.

Рис. 265.

Каждой площадке соответствует точка с координатами на плоскости чертежа, совокупность этих точек заполняет некоторую фигуру. Покажем, что кривая, ограничивающая снаружи эту фигуру, является кругом Мора, построенным на напряжениях . Действительно, точки этого круга изображают напряженные состояния на площадках, параллельных оси следовательно, принадлежат искомой фигуре. Теперь нам достаточно показать, что точка М, находящаяся вне круга Мора, построенного на напряжениях не может изображать напряженного состояния на какой-либо площадке.

Для доказательства предположим противное. Тогда отрезок МС больше радиуса круга Мора и мы имеем следующее неравенство:

Здесь — координаты точки М.

После элементарных преобразований это неравенство примет следующий вид:

(182.2)

Здесь .

По предположению являются нормальным и касательным напряжениями на некоторой площадке. Пусть направляющие косинусы ее нормали по отношению к главным осям будут Тогда по формулам § 39

Внеся эти выражения для s и в неравенство (181.2), получим:

Но направляющие косинусы связаны условием

Поэтому первая скобка равна . Сокращая эту величину, придем окончательно к следующему неравенству:

Но это неравенство невозможно. Действительно, левая часть представляет собою квадратный трехчлен относительно корни этого трехчлена . Так как при трехчлен равен то при и трехчлен положителен, следовательно, при , он должен быть отрицателен, а по определению является средним по величине напряжением.

Следовательно, способ проверки прочности оказывается таким же, как в предыдущем параграфе: на напряжениях , строится круг Мора, прочность обеспечена в том случае, когда этот круг не пересекает предельную кривую.

Рис. 266.

Вид предельной кривой находится из опыта. Для различных напряженных состояний, соответствующих условию разрушения, строятся круги Мора. Предельная кривая будет их огибающей. Как уже неоднократно указывалось, опытные данные по разрушению относятся главным образом к плоскому напряженному состоянию. Если известны разрушающие напряжения при растяжении, сжатии и чистом сдвиге, мы можем с достаточной степенью надежности построить участок предельной кривой, позволяющей судить о прочности во всех случаях плоского напряженного состояния. Действительно, при плоском напряженном состоянии, если то в противном случае было бы и напряженное состояние не было бы плоским; случай же, когда , невозможен, тогда . Поэтому для плоского напряженного состояния круг Мора, построенный на напряжениях либо заключает в себе начало координат, либо проходит через него.

Построим круги Мора, соответствующие предельному состоянию при растяжении, при сжатии и при чистом сдвиге, как показано на рис. 266. Огибающая этих кругов АВ представляет собою часть предельной кривой, которая определяется, таким образом, достаточно надежно. Предельные круги Мора для всех возможных плоских напряженных состояний будут, в соответствии с вышесказанным, касаться предельной кривой на участке АВ. Для того чтобы продолжить предельную кривую влево, необходимо иметь опытные данные испытаний при наложенном всестороннем сжатии. Такие опыты производились многократно, и соответствующие результаты имеются. Продолжение кривой вправо от точки В носит гипотетический характер, следует ожидать, что она пересекает ось в точке .

Абсцисса этой точки представляет собою сопротивление отрыву при всестороннем растяжении, то есть при полном отсутствии пластической деформации. Форма кривой вблизи точки D совершенно неизвестна.

У хрупких материалов обычно сопротивление сжатию больше, чем сопротивление растяжению, соответствующие величины проще всего находятся из опыта. Для расчета на прочность в условиях плоского напряженного состояния в первом приближении можно заменить кривую прямой, касающейся предельных кругов Мора для растяжения и для сжатия. Действительная кривая, как показано на рис. 266, направлена выпуклостью вверх, поэтому сделанное допущение идет в запас прочности.

Рис. 267.

Рассматривая всевозможные круги Мора, касающиеся прямой АВ (рис. 267), мы найдем, что величины , для этих кругов связаны линейным соотношением. Действительно, из подобия треугольников ОАВ и КСВ следует:

Так как — радиус круга Мора, отрезки АО, ОВ и АВ фиксированы заданием предельной прямой, то вышеприведенная пропорция принимает следующий вид:

Но это есть линейное соотношение между а, и которое можно записать следующим образом:

(182.3)

При растяжении и в предельном состоянии временное сопротивление при растяжении); поэтому . При сжатии и в предельном состоянии — временное сопротивление при сжатии); поэтому . Условие достижения предельного состояния (182.3) запишется следующим образом:

Вводя запас прочности, получим следующее условие прочности:

(182.4)

Условие (182.4) справедливо как для хрупких, так и для пластических материалов, так как при оно превращается в условие Треска.

Нужно помнить, что применение формулы (182.4) обосновано только для плоского напряженного состояния, так как всякая экстраполяция линейной формулы для уравнения предельной кривой сомнительна.

Недостатком теории Мора является то, что в ней не учитывается роль среднего напряжения . Для пластических материалов условие Мора переходит в условие Треска, а мы видели, что достижение пластического состояния лучше предсказывается условием Мизеса, содержащим все три главных напряжения. Действительно, если построить круги Мора для различных предельных состояний, не ограничиваясь растяжением, сжатием и чистым сдвигом, как это показано на рис. 266, то окажется, что, строго говоря, огибающей провести нельзя.

Развивая ту же идею, которая заставила перейти от условия пластичности. Треска к условию Мизеса, можно предположить, что предельное состояние достигается тогда, когда возникает неблагоприятная комбинация октаэдрического касательного и октаэдрического нормального напряжений. Условие (182.1) при этом заменяется следующим:

(182.5)

Здесь (см. § 41)

Соответствующие теории развивались Шлейхером (1926 г.), Ю. И. Ягном (1931 г.), П. П. Баландиным (1937 г.). Для получения расчетных формул целесообразно задаться некоторым аналитическим выражением для функции что и было сделано упомянутыми авторами. По-видимому, теории такого типа лучше отвечают опытным данным, чем теория Мора.

1
Оглавление
email@scask.ru