Главная > Дифференциальное и интегральное исчисления для втузов, т.1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 4. Дифференцируемость функций

Определение. Если функция

имеет производную в точке , т. е. если существует

то мы говорим, что при данном значении функция дифференцируема или (что равносильно этому) имеет производную.

Если функция дифференцируема в каждой точке некоторого отрезка или интервала , то говорят, что она дифференцируема на отрезке или соответственно в интервале

Теорема. Если функция дифференцируема в некоторой точке то она в этой точке непрерывна. Действительно, если

то

где есть величина, стремящаяся к нулю при . Но тогда

отсюда следует, что при , а это и значит, что функция непрерывна в точке (см. § 9 гл. II).

Таким образом, в точках разрыва функция не может иметь производной. Обратное заключение неверно, т. е. из того, что в какой-нибудь точке функция непрерывна, еще не следует, что в этой точке она дифференцируема: функция может и не иметь производной в точке

Для того чтобы убедиться в этом, рассмотрим несколько примеров.

Пример 1. Функция определена на отрезке [0, 2] следующим образом (рис. 61):

Эта функция при не имеет производной, хотя и непрерывна в этой точке. Действительно, при имеем

при получаем

Таким образом, рассматриваемый предел зависит от того, каков знак а это значит, что в точке функция не имеет производной.

Рис. 61.

Рис. 62.

Геометрически этому соответствует тот факт, что в точке данная «кривая» не имеет определенной касательной.

Непрерывность же функции в точке следует из того, что

и, следовательно, в обоих случаях при

Пример 2. Функция график которой изображен на рис. 62, определена и непрерывна для всех значений независимой переменной. Выясним, имеет ли эта функция производную при для этого найдем значения функции при и при имеем при имеем Следовательно,

Найдем предел отношения приращения функции к приращению аргумента:

Таким образом, отношение приращения функции к приращению аргумента в точке х = 0 стремится к бесконечности при значит, предела не имеет). Следовательно, рассматриваемая функция не дифференцируема в точке Касательная к кривой в этой точке образует с осью абсцисс угол , т. е. совпадает с осью Оу.

1
Оглавление
email@scask.ru