Главная > Физика дифракции
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

16.3.3. Анализ профиля линий

Для малого почти совершенного монокристалла распределение рассеивающей способности в обратном пространстве вокруг каждой точки обратной решетки дается фурье-преобразованием функции формы кристалла. Если кристалл изогнут или деформирован или если существуют много таких кристаллов, почти параллельных друг другу, с некоторым распределением по ориентациям или постоянным решетки, то распределение в обратном пространстве будет преобразовываться неким характерным образом, как, например, показано на фиг. 16.1 для частного случая. Следовательно, богатую информацию о размерах кристаллов, разбросе ориентаций, а также разбросе размеров элементарной ячейки можно получить при детальном исследовании распределения рассеивающей способности в обратном пространстве.

Многие материалы промышленного или научного значения таковы, что получить для исследования их монокристаллические образцы невозможно. Например, нельзя работать с монокристаллами при рентгеновских дифракционных исследованиях таких микрокристаллических материалов, как металлы, которые подвергались какой-либо холодной обработке. В этом случае могут быть получены только порошковые рентгенограммы, и единственная информация о форме распределений интенсивности в обратном пространстве вокруг точек обратной решетки малых кристаллитов — это статистически усредненные данные, содержащиеся в профилях интенсивности дифракционных колец.

Разумеется, польза от порошковых рентгенограмм, ограничена в том отношении, что из-за усреднения по всем ориентациям на сфере Эвальда трехмерная функция рассеяния сведена к одномерной. Но зато, с другой стороны, на таких рентгенограммах можно со значительной точностью измерять интенсивности и характерные размеры и проводить детальный анализ с помощью ограниченного числа хорошо выбранных параметров.

Изящный метод, предложенный в начале 50-х годов Уорреном и Авербахом [385, 387], позволяет с помощью анализа фурье-преобразований наборов линий порошковой картины различать вклады от размеров кристалла и от деформаций. С этого времени разносторонне развиваются методы анализа профиля линий, и по этому вопросу накоплена обширная литература (см. [399]).

1
Оглавление
email@scask.ru