Главная > Физика дифракции
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

18.4. Дислокации

18.4.1. Дифракционные эффекты.

Поскольку обычные дифракционные методы и другие методы получения изображений нечувствительны к деталям конфигураций атомов вокруг ядра дислокации, обычно оказывается достаточным рассмотреть простую классическую модель поля деформаций дислокации, в основе которой лежит макроскопическая теория упругости. Рассмотрение часто ограничивают дополнительным допущением изотропности упругих свойств материала.

Для винтовой дислокации вектор Бюргерса параллелен линии дислокации. Смещения атомов происходят в направлении и уменьшаются обратно пропорционально расстоянию от линии дислокаций. Расстояние между атомными плоскостями, параллельными линии дислокаций, предполагается неизменным.

Чисто краевую дислокацию можно рассматривать как край дополнительной полуплоскости атомов. Вектор Бюргерса перпендикулярен этой дополнительной полуплоскости и, таким образом, перпендикулярен линии дислокаций. Расстояния между атомными плоскостями, перпендикулярными линии дислокаций, сохраняются. В пределах этих плоскостей смещения атомов имеют компоненты параллельные перпендикулярные где

Здесь угол, измеряемый от направления, перпендикулярного дополнительной полуплоскости, расстояние от линии дислокаций, коэффициент Пуассона для данного материала.

Задача кинематической дифракции от игольчатого кристалла, обладающего осевой винтовой дислокацией, была разработана Вильсоном [396], который показал, что точки обратной решетки уширяются в диски, перпендикулярные оси дислокаций; направление оси было принято совпадающим с осью с. Соответственно ширина таких дисков увеличивалась с ростом где вектор Бюргерса, соответствующий индекс. Максимумы обратной решетки для не подвергались влиянию дислокации. Аналогичные результаты были также получены для чисто краевой и смешанной дислокаций (см. [265]).

Наблюдать указанные дифракционные эффекты, используя рентгеновские лучи, довольно трудно, поскольку объемы образцов, подвергающиеся воздействию одной дислокации, слишком малы, чтобы вызвать измеримые интенсивности. В большинстве материа лов, содержащих большое число дислокаций, их ориентации могут оказаться более или менее случайными или же в результате сегрегации образуются дислокационные сетки. Эти последние формируют границы зерен с малоугловым рассеянием. В результате мы переходим к дифракции от мозаичного кристалла или от кристалла с внутренними деформациями. В каждом случае влияние этих эффектов на интенсивности можно оценить статистически Недавно было обнаружено, что в некоторых материалах параллельное расположение дислокаций может обладать достаточной регулярностью, чтобы привести к образованию сверхструктуры. Сасс и его сотрудники предложили использовать измерение интенсивностей сверхструктурных отражений как основу для структурного анализа, результатом которого было бы определение точного расположения атомов вокруг дислокаций.

В настоящее время представляется вполне возможным получать электронограммы от игольчатых кристаллов с винтовыми дислокациями [70] или от небольших областей тонких кристаллов, содержащих отдельные дислокации любого типа [57, 97]. Однако экспериментальные трудности и неоднозначная интерпретация интенсивностей, сильно зависящих от динамической дифракции, до сих пор не позволили провести детального исследования этими методами.

1
Оглавление
email@scask.ru