Главная > Лекции по математической физике
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

10. Асимптотика цилиндрических функций

Для дальнейшего изучения свойств цилиндрических функций рассмотрим их поведение при больших значениях аргумента. Будем основываться на интегральных представлениях, полученных в п. 7. Рассмотрим для определенности функцию Ханкеля

Лнтеграл -это интеграл по комплексной переменной , зависящий от параметра х, для оценки которого при можно использовать метод перевала. Напомним его основные положения. Если являются аналитическими функциями аргумента в области содержащей контур интегрирования С, то при больших значениях аргумента х имеет место асимптотическая формула

где точка перевала функции определяемая условием а угол указывает направление наискорейшего спуска и определяется следующим образом: Применяя формулу (2.56) к интегралу (2.55), получим

Формула (2.57) выполняется при условии

Поскольку функция является аналитической функцией комплексной переменной на комплексной плоскости с

разрезом по отрицательной части вещественной оси, то в силу общих свойств аналитического продолжения формула (2.57) остается справедливой при в области

При вещественном аргументе х формулу (2.57) обычно записывают следующим образом:

Учитывая, что при вещественных аргументах функции Ханкеля первого и второго рода комплексно сопряжены, из формулы (2.58) получим следующие асимптотические формулы:

Из формул (2.59) следует, что при больших действительных значениях аргумента функции Бесселя и Неймана представляют собой осциллирующие функции х, причем их амплитуды убывают с ростом х как а расстояние между нулями стремится к Причем все эти нули, кроме простые. В самом деле, предположим, что в точке функция Бесселя или Неймана имеет нуль порядка выше первого. Тогда в точке эта функция и ее первая производная обращаются в нуль. Поскольку цилиндрическая функция удовлетворяет уравнению Бесселя, являющемуся однородным дифференциальным уравнением второго порядка, то в силу единственности решения задачи Коши для уравнения Бесселя при получим, что при данная функция тождественно равна нулю. Полученное противоречие доказывает утверждение.

1
Оглавление
email@scask.ru