Главная > Справочник по прикладной статистике. Том 2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

15.3.2. ФОРМИРОВАНИЕ АПРИОРНЫХ ПЛОТНОСТЕЙ

Выше было установлено, что определение априорной плотности зависит от индивидуального опыта суждений. Это приводит к постановке весьма реалистичной проблемы: как превратить такие опыт и

Рис. 15.3.2. Плотность как функция, сглаживающая данные о предыстории

суждения в конкретный вид функции плотности вероятностей Эта проблема подверглась исчерпывающему изучению как статистиками, так и психологами, опубликовано множество теоретических и экспериментальных работ, в которых сообщалось о результатах таких исследований. В статье Хэмптона, Мура и Томаса [см. Hampton, Moore and Thomas (1973)] в удобной форме описаны эти результаты и содержится большой список литературы.

Среди многих возможных подходов следующие два подхода имеют наибольшее значение.

1. Сглаживание данных о предыстории. Предположим, что производитель не уверен относительно доли 0 дефектных единиц при новом производственном процессе. Однако он располагает гистограммой [см. раздел 3.2.2], показывающей относительные частоты, с которыми доля дефектных единиц попадала в различные интервалы, когда внедрялось несколько очень похожих производственных процессов. Подобная гистограмма изображена на рис. 15.3.2 вместе со сглаживающей кривой, нормированной так, чтобы полностью содержать область 1. Эта кривая могла бы служить вполне разумным отображением априорного представления производителя о виде плотности вероятности

Методика очень проста: мы стремимся получить сглаженную плотность, которая отражает вид наблюдавшегося раньше распределения частот. Однако даже в этом случае нельзя избавиться от субъективной, зависящей от характера суждений природы определения ее вида, так как мы должны оценить соответствие и однородность данных о предыстории по отношению к текущей проблеме.

2. Подбор кривой на основании суждений. При отсутствии достаточного объема подходящих данных о предыстории, которые позволяют использовать подход (1), мы вынуждены пытаться выявить наши представления с помощью процесса опрашивания самих себя.

Рассмотрим пример с производителем, внедряющим совершенно новый тип производственного процесса. У него нет ощущения, что прошлые данные, касающиеся долей дефектных единиц при процессах других типов, непосредственно подходят к новому процессу.

Чтобы непосредственно выявить его представления относительно доли дефектных единиц при новом процессе, можно использовать процедуру следующего типа:

а) производителя просят задать верхний и нижний пределы, между которыми, по его мнению, находится значение в. На практике можно было бы попросить его задать такие значения, для которых, как он считает, существует только один шанс из ста, что может быть превзойден хотя бы один из этих пределов. Определенные таким образом значения позволят затем задать приближенно 1%-ную и 99%-ную квантили его распределения [см. раздел 5.2.2 (обратные таблицы)];

б) после этого надо попросить производителя задать значение медианы (или 50%-ную квантиль) [см. раздел 14.2] его распределения. Другими словами, надо спросить, чему равно значение в, которое у него вызывает одинаковое ощущение риска, что доли дефектных изделий окажутся либо больше, либо меньше этого числа;

в) получив значение медианы, которая делит его распределение пополам, производителя просят затем разделить распределение на четверти, задавая таким образом 25%-ную и 75%-ную квантили. Например, чтобы проделать это для 75%-ной квантили, попросим производителя сконцентрировать внимание на тех значениях в, которые лежат между медианой и верхней границей, а затем выбрать такое значение из этого диапазона, чтобы по его оценке вероятности в, лежащих выше или ниже этого значения, оказались приблизительно равными.

В конце опроса у нас будет пять точек, принадлежащих функции распределения (ф.р.) в зависимости от в, а именно 1%-, 5%-, 25%-, 50%-, 75%- и 95%-ные квантили. Чтобы получить разумную аппроксимацию субъективной функции распределения производителя, по ним можно построить сглаженную кривую.

На рис. 15.3.3 показана такая функция, соответствующая следующим (гипотетическим) выявленным точкам:

Соответствующая гистограмма для подынтервалов 0,05-0,1, 0,1-0,15 и т. д. показана на рис. 15.3.4 вместе со сглаженной аппроксимацией функции плотности распределения вероятности (п.р.в.).

Рис. 15.3.3. (см. скан) Гипотетическая субъективная ф.р.

Рис. 15.3.4. (см. скан) Гистограмма и сглаженная п.р.в., соответствующая ф.р., изображенной на рис. 15.3.3.

Мы рассмотрели процедуру формирования априорного распределения для одного параметра. Если априорное определение распределений отдельных параметров может проводиться независимо, то определение совместного распределения для двух и более параметров проводится непосредственно (так как в этом случае процедура

сводится к последовательности формирований одномерных распределений). Но если между параметрами существуют сложные зависимости, то могут возникать значительные трудности. В разделе 15.6 рассмотрен один из аспектов этой проблемы.

1
Оглавление
email@scask.ru