Главная > Общая акустика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 38. Плотность энергии в звуковой волне

Указанным в предыдущем параграфе способом можно ввести (условную) плотность внутренней энергии и в звуковой волне. Для частицы, имеющей объем и испытавшей сжатие измененное давление равно относительное изменение объема равно (это - уточненное значение требуется только для расчета работы исходного давления Р), среднее давление за время сжатия равно Работа, произведенная над частицей данной массы, равна

Интегрируя по всему объему, занятому возмущением, найдем

где область интегрирования охватывает интересующий нас участок среды. Но первый интеграл справа дает просто суммарное приращение объема рассматриваемой массы газа. Если этот объем не изменился, то интеграл равен нулю. Тогда суммарная работа, совершенная над средой, окажется равной

(во втором интеграле пренебречь в знаменателе можно). Условную плотность внутренней энергии и здесь будем считать равной

Суммарная условная плотность энергии в волне есть сумма плотностей кинетической и приращения внутренней энергии:

Так как в бегущей плоской волне в каждой точке и в каждый момент времени то в такой волне в любой точке и в любой момент времени плотность кинетической энергии равна плотности внутренней энергии и суммарная плотность звуковой энергии равна

Плотность энергии в бегущей плоской волне удовлетворяет волновому уравнению. В самом деле, квадрат (и, более того, любая степень) давления в бегущей волне, как и само давление, является функцией от бинома т. е. может рассматриваться как некоторое решение одномерного волнового уравнения (для стоячей волны это утверждение неверно).

Пользуясь формулой (38.2), можно получить следующие выражения для суммарной энергии всей бегущей плоской волны в целом (в расчете на единицу площади фронта):

В первом и третьем интегралах берутся в произвольный момент времени, во втором и четвертом — в произвольной точке. Подынтегральное выражение отлично от нуля только в области, занятой возмущением (в первом и третьем интегралах), и только в тот промежуток времени, когда возмущение проходит через данную точку (во втором и четвертом интегралах).

При помощи той же исходной формулы (38.2) для плотности энергии бегущей плоской волны можно найти и выражение для плотности энергии в случае суперпозиции двух волн, бегущих по одному направлению. Так, сумма двух плоских волн бегущих в одну и ту же сторону, также есть бегущая плоская волна,

Значит, плотность энергии в ней равна

где и плотности энергии составляющих волн в отдельности.

Таким образом, плотность энергии суперпозиции двух волн, бегущих в одном и том же направлении, вообще отличается от суммы энергий составляющих: для энергий волн принцип суперпозиции несправедлив. Плотность энергии результирующего поля может быть как больше, так и меньше суммы плотностей энергий составляющих и может даже обращаться в нуль (тривиальный случай двух волн противоположного знака:

Для суперпозиции двух плоских волн бегущих навстречу друг другу, имеем

откуда

Таким образом, для плоских волн, бегущих навстречу друг другу, плотности энергии всегда складываются. В отличие от бегущей волны, в суперпозиции встречных волн (например, в стоячей волне) плотности кинетической и внутренней энергии не равны друг другу в каждой точке.

Наконец, в суперпозиции двух плоских волн, бегущих под любым углом друг к другу, давления складываются алгебраически, а скорости — векторно. Выбирая ось х в направлении распространения одной из волн и ось у — в плоскости, содержащей оба направления распространения, найдем для результирующего давления и компонент результирующей скорости частиц:

где угол между направлениями распространения обеих волн. Суммарная плотность энергии равна

В этой формуле заключены в виде частных случаев рассмотренная выше суперпозиция двух волн, бегущих в одном и том же направлении и двух волн, бегущих навстречу друг другу

Плотность звуковой энергии очень мала по обычным масштабам энергетики даже для очень громких звуков. Так, плотность энергии в звуковой волне, создаваемой при обычной речи на расстоянии от говорящего (60 дб над стандартным уровнем 0,0002 бара, т. е. звуковое давление равна примерно Фортиссимо оркестра в зале доводит плотность энергии до Таким образом, в большом концертном зале при фортиссимо оркестра суммарная звуковая энергия достигает примерно что равно работе силы тяжести приподнятии грузика на высоту

Еще меньше плотность звуковой энергии в воде: при том же давлении 0,2 бара плотность энергии составляет всего Дело в том, что, как видно из формулы (38.2), при заданном звуковом давлении плотности энергии относятся как сжимаемости сред. При одинаковом звуковом давлении плотность энергии в воде в раз меньше, чем в воздухе. Вообще (не только в звуковой волне) при одинаковом давлении упругая энергия, накапливаемая в газе, огромна по сравнению с энергией в жидкости именно потому, что газы более податливы, чем жидкости. В газе изменение объема, создающее заданное изменение давления, во много раз больше, чем в жидкости.

Интересны иллюстрации этого обстоятельства, взятые из неакустических областей. Почему применяют гидравлические, а не пневматические испытания котлов? Разрыв котла, испытываемого гидравлически, безопасен: запасенная в сжатой воде и выделившаяся при разрыве стенок энергия мала и приведет только к вытеканию небольшого количества жидкости, в то время как разрыв пневматически испытываемого котла — это настоящий взрыв (хотя и значительно менее мощный, чем взрыв котла под паром, когда происходит дополнительное выделение энергии перегретой воды). Способность накоплять большую энергию при заданном значении силы характерна для всяких упругих систем с малым модулем упругости. Этим объясняется меньшая сила толчков на неровностях пути при езде на более податливых рессорах; безопасность прыжка на согнутые ноги и опасность перелома при прыжке на выпрямленные ноги; преимущество сильно вытягивающегося перед разрывом пенькового каната при швартовке корабля по сравнению со стальным тросом, обладающим той же прочностью на разрыв, и т. д.

При одинаковой скорости частиц плотность энергии в бегущей волне пропорциональна плотности среды. Так, при одинаковой скорости частиц плотность энергии в воде в 800 раз больше, чем в воздухе.

При заданной плотности звуковой энергии давления и скорости в бегущих волнах в разных средах относятся как корни квадратные из обратных отношений сжимаемостей и плотностей соответственно.

Рассмотрим подробнее плотность энергии в гармонической волне: в гармонических волнах энергетические соотношения имеют интересные особенности. Для нахождения плотности энергии в гармонической волне запишем давление и скорость частиц в вещественном виде (экспоненциальная запись не годится, поскольку при нахождении энергии требуются квадратичные

величины):

где амплитуды давления и скорости в данной точке, а начальные фазы. Плотность энергии в данной точке выразится формулой

Плотность кинетической и внутренней энергии осциллирует между нулем и максимальными значениями Найдем среднее значение плотности энергии за один период. Так как интеграл от квадрата косинуса за период равен , то искомое среднее равно

Средняя плотность энергии за период, очевидно, равна приближенно среднему за промежуток времени, много больший периода.

Рассмотрим теперь среднюю за большой промежуток времени плотность энергии суммы двух гармонических волн разной частоты:

Мгновенная плотность энергии в данной точке выразится теперь формулой

Но среднее от произведения косинусов разных частот за большой промежуток времени стремится к нулю по мере увеличения промежутка, поэтому члены, содержащие это произведение, при усреднении можно опустить. Тогда

т. e. средние плотности энергии двух гармонических волн разной частоты аддитивны.

Очевидно, аддитивность средних плотностей энергии имеет место и для любого числа составляющих гармонических волн данного звукового поля. Так, для периодического поля средняя энергия равна сумме средних за период поля энергий его гармонических составляющих. При этом фазы компонент роли не играют: средняя энергия зависит только от амплитудного спектра данного периодического поля.

Для бегущей плоской гармонической волны плотность энергии равна, согласно (38.2),

Плотность энергии в плоской волне осциллирует от точки к точке по синусоидальному закону между нулем и значением (рис. 38.1). Средняя плотность энергии в бегущей гармонической волне как по времени, так и по пространству равна

Рис. 38.1. Мгновенное пространственное распределение плотности звуковой энергии в бегущей плоской гармонической волне.

В стоячей гармонической волне

средняя плотность энергии в любой точке (или равная ей средняя по пространству плотность энергии в любой момент времени) равна

В отличие от бегущей волны, в стоячей волне средние по времени значения кинетической и внутренней энергии не равны друг другу в каждой точке:

Кинетическая энергия достигает максимума в узлах, а внутренняя — в пучностях давления.

Аддитивность средних плотностей энергий имеет место не только для гармонических волн разных частот, но и для статистических волн при их статистической независимости. В этом случае функция корреляции давления в этих волнах, равная по определению среднему по времени значению произведения давлений, равна нулю.

Длятого чтобы энергии складывались в среднем, достаточно, чтобы обращалось в нуль среднее значение произведения давлений. Требование статистической независимости волн является достаточным, но не необходимым, как мы видели на примере двух синусоид разных частот.

1
Оглавление
email@scask.ru