Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 79. Распространение инфразвука в море. Плоская задачаРезультаты предыдущего параграфа применимы к важной задаче о волноводном распространении звука низкой частоты в море. В районах постоянной глубины море можно рассматривать как волновод, ограниченный дном и свободной поверхностью воды. Для низких частот можно пренебрегать неровностями дна и неровностью свободной поверхности, вызванной морским волнением, и считать границы волновода плоскими. Кроме того, можно пренебрегать и неоднородностью среды, вызываемой изменением температуры и гидростатического давления с глубиной. Практически, если при данной частоте возможно распространение лишь нескольких первых номеров нормальных волн, то море можно рассматривать как однородный плоскопараллельный слой, лежащий на упругом полупространстве — морском грунте. Морской грунт, вообще, — упругое твердое тело, неоднородное по глубине. Найти нормальные волны в волноводе, ограниченном таким упругим телом, весьма сложно. Но некоторые основные черты моря как волновода можно представить себе, упрощая задачу: аппроксимируя грунт жидким однородным полупространством с некоторыми эффективными значениями плотности и сжимаемости. Тогда, пользуясь данными предыдущего параграфа, можно, ограничиваясь, как и выше, плоской задачей, написать дисперсионное уравнение нормальных волн, исходя из коэффициентов отражения плоских волн у дна и у поверхности воды. Коэффициент отражения у дна равен
где Нас интересуют волны, распространяющиеся в водном слое без затухания. Если звуковая энергия переходит в грунт, то модуль коэффициента отражения от дна меньше единицы, и волна затухает по мере распространения. Поэтому есть смысл рассматривать водный слой как волновод только для таких волн, для которых энергия в грунт не перетекает, т. е. случай Найдем дисперсионное уравнение для нормальных волн, удовлетворяющих этому требованию. Коэффициент отражения от нижней границы в этом случае комплексный:
Подставляя в (78.1), найдем
или
откуда
где При критическом угле скольжения
При критической частоте
и, следовательно, то же распределение давления по глубине, что и нормальная волна в волноводе с абсолютно жесткой нижней границей. Однако при этом частота выше критической для волновода с жесткой стенкой в Волновое число нормальной волны при критической частоте равно волновому числу плоской волны в грунте. Значит, при критической частоте фазовая скорость
Но из (79.1) следует
откуда видно, что при критической частоте, когда При частоте выше критической Это обстоятельство используют для определения скорости звука в морскрм грунте: звук взрыва, произведенного в воде, принимают в воде же на большом расстоянии от места взрыва. «Вступление» сигнала должно соответствовать пробегу этого расстояния со скоростью звука в грунте. Нужно иметь в виду, однако, что амплитуда возбуждения волны в точности на критической частоте равна нулю: при критическом угле скольжения в грунте должна распространяться плоская волна, бегущая вдоль границы, и при конечной амплитуде она несла бы с собой бесконечную энергию. Фактически регистрируется волна, приходящая уже с несколько меньшей групповой скоростью, для которой угол скольжения меньше критического, и волна в грунте — неоднородная, несущая конечный поток энергии и поэтому возбуждающаяся с конечной амплитудой. Анализ выражения для групповой скорости показывает, что для каждой нормальной волны для частоты выше критической групповая скорость сначала убывает, опускаясь ниже скорости звука в воде, а затем, после прохождения минимума, снова растет, стремясь при повышении частоты к скорости звука в воде (рис. 79.1). Поэтому каждая нормальная волна с широким спектром даст на большом расстоянии от места возбуждения затянутый сложный сигнал. Например, при дальнем приеме взрыва первое «вступление» придет со скоростью звука в грунте, после чего несущая частота растянутого сигнала будет повышаться. Затем на него наложится второе «вступление» сигнала большой частоты, приходящее со скоростью звука в воде; несущая частота этого сигнала убывает с течением времени. Сигнал окончится, когда растущая частота первого и убывающая частота второго сигнала сравняются, что произойдет в момент времени, соответствующий минимальной скорости распространения в море данной нормальной волны.
Рис. 79.1. Дисперсионные кривые нормальной волны некоторого номера в море. «Вступление сигнала» происходит в момент
|
1 |
Оглавление
|