Главная > Алгебра (Ван дер Варден Б.Л.)
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

Глава семнадцатая. ЦЕЛЫЕ АЛГЕБРАИЧЕСКИЕ ЭЛЕМЕНТЫ

Развитие теории идеалов имеет с исторической точки зрения два источника: теорию алгебраических чисел и теорию идеалов в кольцах многочленов. Обе эти теории, однако, возникли из совершенно различных по своей постановке задач. В то время как основной задачей теории идеалов в кольцах многочленов является определение корней и установление необходимых и достаточных условий для принадлежности некоторого многочлена заданному идеалу, в теории целых алгебраических чисел исходным является вопрос о разложении на множители. К этому вопросу можно прийти, например, в следующих рассмотрениях.

В кольце чисел где целые рациональные числа, не имеет места теорема об однозначности разложения элементов на множители. Например, число 9 обладает двумя существенно различными разложениями на простые множители:

Это обстоятельство побудило Дедекинда расширить область рассматриваемых элементов до области идеалов (так им впервые были названы эти объекты; Дедекинд следовал за Куммером, который добился однозначности разложения на простые множители в полях деления круга с помощью введения некоторых «идеальных чисел»). Ему удалось показать, что в этой области каждый идеал равен однозначно определенному произведению простых идеалов. Действительно, если в указанном выше примере ввести простые идеалы

то, как легко подсчитать,

откуда для главного идеала (9) получается (единственное) разложение

В этой главе будет изложена классическая (дедекиндова) теория идеалов целых элементов в модернизованной аксиоматической форме, предложенной Э. Нётер

Categories

1
Оглавление
email@scask.ru