§ 93. Дипольный момент системы зарядов
Вернемся к электрическим системам, которые можно представить как системы точечных зарядов. Положим, что на протяжении интересующей нас системы зарядов электрическое поле однородно. Тогда формула силы, действующей на систему, имеет вид
где полный заряд системы. Если тело электрически нейтрально, как, скажем, атом или молекула, то сила, действующая на такое тело, содержащее равные количества положительных и отрицательных частиц, будет равна нулю. Значит ли это, что электрически нейтральное тело не обладает взаимодействием с электрическим полем? Нетрудно видеть, что нет. В однородном поле силы, действующие на заряды системы, параллельны друг другу. Мы можем отдельно сложить силы, действующие на положительные заряды, и отдельно силы, которые приложены к отрицательным зарядам. Как хорошо известно, равнодействующая параллельных сил приложена в центре «тяжести» тела. Слово «тяжесть» взято в кавычки, так как сейчас речь идет об электрическом центре тяжести. В результате все силы, действующие на заряды системы, находящейся в однородном поле, сведутся к двум антипараллельным силам, приложенным в центрах тяжести положительных и отрицательных зарядов (рис. 95). Если система электрически нейтральна, то обе силы будут одинаковы; полная сила будет равна нулю, но на тело будет действовать пара сил с моментом
Рис. 95.
Момент сил может подействовать на систему зарядов только в том случае, если центры «тяжести» положительных и отрицательных зарядов сдвинуты друг по отношению к другу.
Вектор равный по величине произведению положительного заряда системы на расстояние между центрами тяжести, носит название дипольного момента системы. Дипольный момент считают направленным от отрицательного центра к положительному. Дипольный момент системы определяет ее поведение в однородном поле. Система, предоставленная сама себе, поворачивается в однородном электрическом поле так, чтобы ее дипольный момент совпал с направлением электрического поля
В однородном поле все действия на нейтральную систему электрических зарядов сводятся к моменту силы где дипольный момент системы, равный произведению количества электричества одного знака на плечо диполя. Таким образом, нет нужды
рассматривать в однородном поле сложное расположение какой-либо системы зарядов; ее надо заменить соответствующим диполем.
Если система находится в неоднородном поле, то дипольный момент уже не будет исчерпывающим образом описывать ее свойства. Это видно из рис. 96. Четыре заряда, расположенных по углам квадрата, образуют электрически нейтральную систему с дипольным моментом, равным нулю (центры тяжести отрицательного и положительного зарядов совпадают).
Рис. 96.
В однородном поле на такую систему не действуют ни силы, ни момент силы. В неоднородных полях, разумеется, этот квадрат может и перемещаться поступательно и поворачиваться, так как силы, действующие на заряды, вообще говоря, различны. По аналогии с диполем такой системе дано название квадруполь. На том же рисунке изображена еще одна нейтральная система с нулевым дипольным моментом — октуполь.
Значительный интерес для учения о строении вещества, которым мы будем заниматься много позднее, представляет рассмотрение взаимодействий простейших электрических систем. Рассмотрим некоторые из них.
Заряд — заряд.
Взаимодействие двух точечных зарядов происходит по закону Кулона
Заряд—диполь.
Предоставленный сам себе диполь стремится повернуться так, чтобы установиться вдоль силовых линий.
Рис. 97.
После того как такой поворот произошел, диполь остается неподвижным в однородном поле, а в неоднородном будет втягиваться, как это видно из рис. 97, в область более сильного поля. В случае, если
неоднородное поле есть поле точечного заряда, диполь будет притягиваться к этому заряду. Сила притяжения равна
Если плечо диполя мало, то, приводя к общему знаменателю, мы получим, пренебрегая величиной по сравнению с а величиной по сравнению с следующую интересную формулу:
Обратим внимание на то, что сила взаимодействия заряда и диполя убывает с расстоянием быстрее, чем кулоновская сила, а именно, она обратно пропорциональна кубу расстояния.
Рис. 98.
Пример. Расстояние между атомами в молекуле равно 1,28 А, дипольный момент молекулы Тогда электрон, находящийся на расстоянии А от молекулы, притягивается к ней с силой дин.
Диполь — диполь.
Здесь полезно решить две задачи для взаимных расположений диполей, показанных на рис. 98. Точные формулы взаимодействия имеют вид
Если плечо диполя мало, то формулы можно заменить следующими приближенными выражениями:
Силы взаимодействия убывают обратно пропорционально четвертой степени расстояния.
Пример. Две молекулы расстояние между которыми притягиваются с силой дин в случае дин в случае
Заряд — квадруполь.
Расчет ведется для ориентировки, показанной на рис. 99. Сила взаимодействия может быть записана в виде
Приближенная формула для малого квадруполя: Сила убывает обратно пропорционально четвертой степени расстояния.
Рис. 99.