Главная > Введение в физику (А. И. Китайгородский)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 70. Внутренняя энергия газа

Свойства одноатомных газов определяются кинетической энергией поступательного движения молекул. Внутренняя энергия атома не сказывается на термодинамике газа. Очевидно, учет внутренней энергии атома может стать нужным лишь в тех случаях, когда газ находится при очень высокой температуре и когда столкновения атомов могут привести к их возбуждению и. ионизации. Об этих процессах в свое время у нас будет подробная речь.

Таким образом, весьма широкую применимость будет иметь формула внутренней энергии одноатомного газа

где число молекул. Воспользовавшись формулами предыдущего параграфа, получим для I моля идеального одноатомного газа выражение

Отсюда для теплоемкостей 1 моля одноатомного газа получим по формулам, приведенным в § 60:

и

Прямая пропорциональность температуре внутренней энергии и соответственно постоянство теплоемкостей одноатомного газа имеют место в довольно широком интервале внешних условий.

У многоатомных газов такая простая картина если и имеет место, то в значительно более узком интервале температур. Причина заключается в том, что энергия многоатомной молекулы складывается из энергии поступательного движения, энергии вращения и энергии колебания частей молекулы (т. е. атомов, из которых она построена) друг по отношению к другу. Подсчет средней энергии, приходящейся на молекулу довольно сложным. Оказывается, что энергия молекулы уже не будет линейно зависеть от температуры и соответственно теплоемкость газа уже не будет постоянной, не зависящей от величиной. Все же обычно удается найти узкий интервал температур, внутри которого теплоемкость газа не зависит от температуры. Это имеет место при таких значениях

температуры, при которых средняя энергия молекулы еще недостаточна для того, чтобы соударения молекулы могли привести к изменению ее колебательного состояния, и в то же время эта энергия достаточно велика, чтобы не чувствовался дискретный (квантовый) характер энергии вращения. Забегая вперед и отсылая читателя к рис. 266 (стр. 577), можно сказать, что линейный ход энергии с температурой и постоянство теплоемкости будут иметь место в том случае, если величина характеризующая по порядку величины энергию поступательного движения молекулы, существенно больше расстояния между вращательными уровнями энергии и меньше расстояния между колебательными уровнями энергии.

Если такой интервал существует, то энергия моля газа и его теплоемкости выражаются следующими простыми формулами:

Возрастание внутренней энергии и вдвое по отношению к одноатомному газу можно толковать следующим образом. У многоатомной молекулы шесть степеней свободы, в то время как у одноатомной — три. Увеличение вдвое числа степеней свободы влечет за собой увеличение вдвое внутренней энергии. Конечно, в этом утверждении нет ничего само собой разумеющегося. Однако мы находим подтверждение этой точке зрения, рассматривая газ двухатомных молекул.

Рис. 84.

Поскольку двухатомная молекула — это система из двух материальных точек, то она обладает пятью степенями свободы (см. стр. 36). Если действительно внутренняя энергия пропорциональна числу степеней свободы, то для газа двухатомных молекул должны иметь место формулы

Опыт показывает, что в участке температур, где теплоемкость остается неизменной, эти формулы хорошо выполняются. Внутренняя энергия одного моля двухатомного газа при комнатной температуре 300 К будет

Типичный ход кривой теплоемкости в широком интервале температур иллюстрируется рис. 84.

1
Оглавление
email@scask.ru