Главная > Введение в физику (А. И. Китайгородский)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 115. Превращения в замкнутой цепи переменного тока

Протекание переменного тока неизбежно сопровождается индукционными явлениями. Действительно, переменной силе тока соответствует переменный магнитный поток Под понимается число силовых линий, создаваемых рассматриваемой цепью тока и пронизывающих проводящий контур. В этом случае индукционные явления будут вызваны своим собственным магнитным потоком, откуда и название явления — самоиндукция. Так как непрерывно меняется, то в цепи тока в каждый момент времени наряду со сторонней э. д. с. имеется, кроме того, э. д. с. индукции, равная

Магнитный поток всегда пропорционален первой степени тока. Формула имеет универсальную справедливость. Коэффициент это индуктивность цепи (другое название — коэффициент самоиндукции). Значение зависит от геометрических свойств цепи, от характера заполнения системы магнитными телами и не зависит от условий, в которых работает эта система проводов и магнитных тел. Таким образом, для э. д. с. самоиндукции имеет место равенство

Смысл знака минус в этой формуле сводится к следующему: Э. д. с. индукции противодействует сторонней силе в те мгновения, когда ток возрастает; э. д. с. индукции направлена против сторонней силы. Наоборот, когда ток падает, э. д. с. индукции совпадает по направлению со сторонней э. д. с. Это обстоятельство и обусловливает распространенную аналогию между явлением механической инерции и явлением самоиндукции. Самоиндукция. препятствует как возрастанию, так и уменьшению тока.

Закон Ома, связывающий э. д. с. и силу тока, остается в силе. Поэтому произведение силы тока на полное сопротивление цепи будет в каждый момент времени иметь значение

Помножим обе части равенства на мгновенную силу тока. Получим энергетическое равенство такого вида:

Здесь работа сторонних сил, джоулево тепло. Мы видим, что в цепи переменного тока равенство этих двух величин не имеет места. Разность равная каждый момент времени равна производной от Иными словами, избыток работы сторонних сил над выделением джоулева тепла идет на приращение величины Наоборот, избыток выделяющегося тепла над работой сторонних сил происходит за счет величины Уравнение

выражает закон сохранения энергии.

Величина несомненно имеет смысл энергии. Это — магнитная энергия системы, неразрывно связанная с существованием в ней магнитного (в системе СГС формула магнитной энергии -у Магнитная энергия имеется и в цепи постоянного тока. Но в этом случае она не проявляет себя, остается неизменной. Индукционные явления имеют место только при включении и выключении тока. При замыкании цепи сторонние силы производят работу, которая затрачивается наряду с выделением тепла и на накопление магнитной энергии. Наоборот, при размыкании выделение джоулева тепла происходит за счет магнитной энергии тока.

Формулу магнитной энергии можно было бы проверить опытным путем, исследуя замыкание или, еще лучше, размыкание тока. Джоулево тепло, выделившееся с мгновения отключения источника, должно численно равняться магнитной энергии тока. Если коэффициент самоиндукции велик, то выделение тепла продолжается достаточно долго и может быть измерено, скажем, калориметрическими способами.

Индуктивность можно измерить различными опытами, а в простейших случаях можно и вычислить по формуле Задача сводится к вычислению магнитного потока, проходящего через систему.

Нам понадобится в дальнейшем выражение индуктивности кругового соленоида. Магнитный поток через один виток катушки равен где площадь витка, поток через витков Подставим сюда выражение напряженности поля (воспользуемся системой

Поделив на силу тока, получим выражение индуктивности катушки (приближенно эта формула пригодна и для открытого соленоида):

Индуктивность катушки прямо пропорциональна магнитной проницаемости среды и резко зависит от числа витков. Увеличение индуктивности достигается применением железа и увеличением числа витков. Чтобы стала отчетливой связь величины коэффициента самоиндукции с размерами катушки, помножим числитель и знаменатель на Тогда

и становится ясным, что индуктивность прямо пропорциональна объему, занятому магнитным полем, и квадрату плотности, с которой ложатся витки катушки.

Пример. Дан узкий длинный соленоид см, витков, В середине соленоида возникает магнитный поток Индуктивность такого соленоида

генри

В системе СИ индуктивность измеряется в генри, В радиотехнике индуктивность катушек измеряется миллионными и тысячными долями генри. Индуктивность дросселей с железным сердечником может достигать целых генри.

1
Оглавление
email@scask.ru