Главная > Введение в физику (А. И. Китайгородский)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 260. Поляризация полярных и неполярных молекул

Существуют две причины поляризации вещества под действием электрического поля. Первая состоит в смещении центра тяжести электронной оболочки (собственно поляризуемость). Вторая заключается в ориентирующем действии поля, которое может повернуть молекулы, обладающие постоянным (как иногда говорят, жестким) дипольным моментом, ближе к направлению поля. Принято поэтому разбиение поляризуемости на две части: а — собственно поляризуемость и ориентационная поляризуемость.

Ориентирование диполя требует поворота молекулы как целого. Вследствие инерции молекулы этот поворот требует некоторого времени. При быстрых электромагнитных колебаниях жесткий диполь не может следовать за полем. Поэтому для световых волн ориентационная поляризуемость отсутствует.

Итак,

Измеряя показатель преломления, мы получаем возможность найти поляризуемость молекулы а. Если, кроме того, измерено и то вычитание даст значение ориентационной поляризуемости

Величина ориентационной поляризуемости непосредственно связана с жестким дипольным моментом молекулы. Покажем, что

Молекулы газа разбросаны в пространстве с произвольными ориентировками из-за теплового хаотического движения. В отсутствие поля дипольный момент молекулы с равной вероятностью имеет любую ориентацию. Если наложено поле то положение дел меняется. Потенциальная энергия диполя равна где потенциалы поля в местах концов диполя, т. е.

где угол между векторами поля и дипольного момента. Минимальной энергией обладает диполь, установившийся вдоль поля, его энергия будет — Тепловое движение препятствует тому, чтобы все диполи заняли положение с минимумом энергии. Устанавливается некоторое компромиссное распределение: уравновешиваются стремления к максимальной энтропии и к минимуму энергии (ср. стр. 603). Закон Больцмана выражает этот компромисс. Вероятность того, что энергия молекулы лежит между пропорциональна В нашем случае поэтому Доля молекул, у которых направления дипольных моментов заключены между углами будет

Для обычных температур Даже для самых сильных полей порядка 105 В/см отношение будет порядка 0,01 (диполь-ные моменты суть величины порядка Поэтому можно ограничиться приближением и искомая доля молекул будет равна

Интеграл этого выражения по от до по смыслу понятия вероятности должен равняться единице, так как у любой молекулы направление лежит где-нибудь между Тогда, как легко проверить, и доля молекул, вектор поляризации которых лежит в интервале от до будет равна

Проекция дипольного момента на направление поля есть Если число молекул в единице объема, то доля, которая будет

внесена в вектор поляризации молекулами, наклоненными под углом к полю, будет равна

Вектор поляризации найдется интегрированием этого выражения от до . Получим:

и, следовательно, ориентационная поляризуемость выразится формулой

Связь молекулярной поляризации с температурой выражается формулой

Это заключение теории превосходно подтверждается опытом. Измеряя 9 в функции от 7, нетрудно из хода этой зависимости вычислить оба параметра, характеризующих электрические свойства молекулы: поляризуемость и «жесткий» дипольный момент

Таким образом, данные, полученные из рефракции (в отношении а), могут быть сопоставлены с измерениями поляризации

Опыты показывают, что в некоторых случаях взаимодействие диполей соседних частиц может привести к существенным изменениям диэлектрической проницаемости по сравнению с величиной для системы невзаимодействующих молекул. Такого рода наблюдения можно сделать, измеряя жидкости и газа, построенных из тех же молекул.

Взаимодействие частиц сказывается и на величине диэлектрической проницаемости кристаллов.

В кристаллических телах, как правило, электрическая поляризация происходит только за счет деформации электронной оболочки и сдвигов ионов. Ориентационная поляризация отсутствует: повороты молекул в кристалле большей частью невозможны.

Во многих ионных кристаллах квадрат показателя преломления значительно меньше величины диэлектрической проницаемости (например, у каменной соли соответственно 2,37 и 6,3, двуокиси титана 7,3 и 114, углекислого свинца 4,34 и 24 и т. д.). В таких кристаллах под действием статического поля деформируется не только электронная оболочка, но и ионы сдвигаются как целое. Напротив, установлено, что в молекулярных кристаллах диэлектрическая проницаемость не отличается от квадрата показателя преломления, что доказывает наличие поляризации исключительно за счет деформации электронной оболочки.

Так как ориентационная поляризация отсутствует, то у кристаллов имеет место слабая зависимость диэлектрической проницаемости от температуры.

Мы уже сказали вскользь, что при быстропеременном полеориентационная поляризация отсутствует и молекулярная поляризация становится равной рефракции. Важно знать, какие колебания поля следует считать быстрыми. Это определяется временем релаксации. Если время релаксации намного превышает период колебаний, то ориентационная поляризация отсутствует.

О времени релаксации было сказано на стр. 144. Если диэлектрик находится в постоянном поле, его диполи примут некоторое равновесное распределение по ориентациям, характерное для данной температуры. Если поле выключить, то произойдет дезориентация диполей. Однако она происходит не мгновенно, а порядок спадает по экспоненциальному закону. Быстроту этого спада и характеризует время релаксации время, за которое поляризация уменьшится в раз. Если много больше периода колебаний, то прежде чем ориентация диполей изменится, переменит свое направление внешнее поле. Действие столь быстрого поля вообще не скажется на поведении диполей. Если же каждое мгновенное состояние будет равновесным и поляризация будет послушно следовать за полем. Для большинства диэлектриков времена релаксации имеют порядок

Примеры. 1. Найдем величины собственно поляризуемости а и ориентационной поляризуемости для бензола и воды, используя результаты предыдущего примера (стр. 629): отсюда

С другой стороны,

Отсюда видно, что ориентационная поляризуемость бензола

Это значит, что молекулы бензола не обладают жестким дипольным моментом, а у молекул воды он есть.

2. Найдем жесткий дипольный момент молекулы воды Поскольку измерения молекулярной поляризации и молекулярной рефракции производятся при комнатной температуре

Результаты этого расчета близки к опытным значениям.

Довольно часто при задании дипольных моментов используется единица Единица названа по имени немецкого ученого Дебая, развившего теорию дипольных моментов.

1
Оглавление
email@scask.ru