Главная > Введение в физику (А. И. Китайгородский)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 137. Дифракция волн на отверстиях

Амплитуда рассеяния отдельной частицей определяется характером распределения в ней рассеивающего вещества. Можно встретить частицы («отверстия»), в которых плотность рассеивающего вещества плавно падает с удалением от центра атома. Можно представить себе более резкие неоднородности — включения или поры, на краях которых плотность меняется скачком.

При рассеянии любыми такими неоднородностями возникают своеобразные так называемые дифракционные эффекты. Интенсивность рассеяния сначала плавно спадает с возрастанием угла, - затем обращается в нуль; при дальнейшем возрастании угла интенсивность возрастает вновь, доходит до какого-то максимального значения, затем вновь падает до нуля и далее спадает волнообразно. Рассеяние такими объектами приводит к образованию дифракционных полос и пятен разной формы в зависимости от рассеивающего объекта.

Наиболее резко дифракционные эффекты обнаруживаются при рассеянии на отверстиях, сделанных в непрозрачном экране. Каждое отверстие можно рассматривать как участок, равномерно заполненный излучающими диполями. Картины рассеяния отверстием или частицей, имеющей форму такого отверстия, должны давать совпадающие кривые хода интенсивности с углом рассеяния.

Для световых лучей дифракционные картины проще всего наблюдаются в параллельных лучах при помощи следующей схемы.

Световой пучок, выходящий из источника, делается параллельным и падает на экран, в котором можно располагать различные включения (если экран прозрачный) или отверстия (если он непрозрачен).

Рис. 154. (см. скан)

Линза, установленная за экраном, сводит параллельные лучи в плоскость фотопластинки (или экран для рассмотрения эффекта). Если на пути лучей не будет никаких неоднородностей, отверстий и пр., то эта линза соберет лучи в точку. В противном случае на экране возникнет картина рассеяния или дифракции.

На рис. 154 приводятся полученные таким способом дифракционные картины от иголок и тонкой проволоки и от круглого отверстия

Чтобы происхождение этих картин было очевидным, мы произведем расчет распределения интенсивности рассеянного излучения для простейшего случая отверстия в виде щели.

Пусть волна падает на щель, вырезанную в непрозрачном экране, под прямым углом. Разобьем щель на объемы так, как показано на рис. 155, и напишем выражение волны, посылаемой произвольным объемом в направлении под углом к падающей волне. Волны от различных элементов придут в точку наблюдения с разными фазами. Если разности хода отсчитывать по отношению к самому крайнему лучу (в сторону отклонения), то лучи, посланные следующими объемами, будут проходить пути на величину большую и, следовательно, будут сдвинуты по фазе на

Рис. 155.

Амплитуда волны, рассеянной объемом, будет пропорциональна «рассеивающему» объему т. е. выражению

Надо сложить эти выражения для всех объемов. Суммирование можно заменить интегрированием по координате х, отсчитываемой поперек щели. Заменяя на пропорциональное ему и переходя к пределу, получим для амплитуды рассеяния под углом

коэффициент пропорциональности, ширина щели. Вводя переменную

получим

и, следовательно,

Обозначая и делая тригонометрическое преобразование, получим

Таким образом, результирующее колебание в точке наблюдения происходит с амплитудой т. е. наблюдаемая интенсивность

Это — формула распределения интенсивности в зависимости от угла рассеяния.

Рис. 156.

В большинстве дифракционных экспериментов нас интересуют малые углы рассеяния причины этого позднее станут ясными. Поэтому, заменяя на и учитывая, что

где расстояние точки наблюдения в плоскости фотопластинки до центра дифракционной картины, а расстояние от щели до фотопластинки, получим для и выражение

На рис. 156 изображена кривая так как и пропорционально то так выглядит дифракционная картина на фотопластинке.

Места темных полос находятся легко из условия где целое число. Таким образом, первый нуль лежит при тому же числу равно и расстояние между двумя последовательными обращениями интенсивности в нуль.

Эта формула показывает, когда будут наблюдаться дифракционные явления на разных длинах волн и в разных условиях. Дифракция света хорошо наблюдается в лабораторных условиях, если брать отверстия порядка 0,1 см и расстояния порядка между экраном и пластинкой. При этих цифрах эффект будет отчетливо виден.

Видимые лучи будут давать заметную дифракцию от теннисного мяча , но на большем расстоянии. При расстоянии и длине волны Таким образом, и в этом случае расстояние между обращениями в нуль интенсивности рассеянного излучения по порядку величины равно

В соответствующих уравнению условиях можно наблюдать и дифракцию радиоволн.

Пусть величины фиксированы. Ширина щели существенно сказывается на дифракционной картине. Если щель велика, то т. е. изображение щели, сфокусированное линзой, бесконечно тонко. По мере уменьшения ширины щели дифракционная картина начинает выявляться и первый дифракционный минимум начинает все дальше отодвигаться от центра картины. Наконец, щель станет столь малой, что наше приближение в формуле для и (замена на ) будет неверным. Изображение щели на экране расплывается, и в конечном счете, когда длина волны и размер щели сравняются, щель будет давать вторичное излучение как единый источник. Интерференция элементарных волн исчезнет, и от щели будет расходиться во все стороны элементарная волна.

Для отверстий и частиц (или включений в среде) другой формы дифракционные картины, как показал рис. 154, имеют совсем другой вид. Тем не менее главные особенности картины и общие закономерности сохраняются. Так, например, при дифракции от круглого отверстия или иной круглой неоднородности наблюдаются концентрические кольца с минимальным диаметром темного кольца где диаметр отверстия.

Так как дифракционные картины имеют максимумы в различных местах для разных длин волн, то при дифракции белого света возникает разложение в спектр. Дифракция от круглой частицы или отверстия имеет вид радужного кольца.

1
Оглавление
email@scask.ru