Главная > Математика и ее история
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

2.10. Построения с помощью линейки и циркуля

Греческие геометры гордились собой из-за своей логической чистоты; тем не менее, что касается физического пространства, они руководствовались интуицией. Одной из сторон греческой геометрии, на которую особенно влияли физические соображения, была теория построений. Многое из элементарной геометрии прямых линий и кругов можно рассматривать как теорию построений с помощью линейки и циркуля. Само название предмета, линии и круги, отражает инструменты, которые использовались для их проведения. И многие из элементарных проблем геометрии, например, деление пополам отрезка прямой или угла,

построение перпендикуляра или проведение круга через три заданные точки, можно решить построениями с помощью линейки и циркуля.

Когда введены координаты, нетрудно показать, что точки, допускающие построение из точек имеют координаты во множестве чисел, созданном из координат посредством операций и [см. Муаз (1963) или упражнения к разделу 6.3]. Квадратные корни, конечно, появляются вследствие теоремы Пифагора: если построены точки и тогда построено расстояние между ними (раздел 1.6 и рисунок 2.4). Обратно, возможно построение для любой заданной длины I (упражнение 2.3.2).

Рисунок 2.4: Построение расстояния

Если взглянуть с этой точки зрения, то построения с помощью линейки и циркуля выглядят весьма специальными и, маловероятно, что дадут, такие числа так, например, Однако греки очень упорно пытались решить именно эту задачу, которая была известна как удвоение куба (так называемая потому, что для того, чтобы удвоить объем куба, нужно было умножить сторону на Другими печально известными задачами были трисекция угла и квадратура круга. Последняя задача заключалась в построении квадрата, равного по площади заданному кругу, или в построении числа которое равновелико тому же. По-видимому, они никогда не отказывались от этих целей, хотя признавали возможность отрицательного решения и допускали решения посредством менее элементарных средств. В следующих разделах мы увидим некоторые из них.

Невозможность решения этих задач построениями с помощью линейки и циркуля оставалась недоказанной до девятнадцатого столетия. Что касается удвоения куба и трисекции угла, то невозможность показана Вантцелем (1837). Честь решения этих задач, над которыми бились лучшие математики в течение 2000 лет, редко приписывают Вантцелю, возможно, потому, что его методы вытеснила более мощная теория Галуа.

Невозможность квадратуры круга доказана Линдеманом (1882), очень строгим способом, не только неопределимо рациональными операциями и квадратными корнями; оно также трансцендентно, то есть не является корнем какого-либо полиномиального уравнения с рациональными коэффициентами. Как и работа Вантцеля, это был редкий пример значительного результата, доказанного незначительным математиком. В случае Линдемана, объяснение, возможно, заключается

в том, что уже был сделан важный шаг, когда Эрмит (1873) доказал трансцендентность Доступные доказательства обоих этих результатов можно найти у Клейна (1924). Последующая карьера Линдемана была математически непримечательной, даже смущающей. Отвечая скептикам, которые полагали, что его успех с был счастливой случайностью, он нацелился на самую известную нерешенную задачу в математике «последнюю теорему Ферма» (о возникновении этой задачи см. главу 11). Его усилия кончились неудачей в ряде неубедительных статей, каждая из которых исправляла ошибку в предыдущей. Фрич (1984) написал интересную биографическую статью о Линдемане.

Одна задача линейки и циркуля все еще отрыта: какие правильные -угольники можно построить? Гаусс в 1796 году открыл, что возможно построение -угольника, и затем показал, что построение правильного -угольника возможно тогда и только тогда, когда где каждое простое число вида (Эта задача известна также как деление круга, потому что она эквивалента делению длины окружности круга, или угла на равных частей.) Доказательство необходимости фактически завершил Вантцель (1837). Однако, до сих пор точно не известно, каковы эти простые числа или даже бесконечное ли их множество. Известны лишь числа для

Упражнения

(см. скан)

(см. скан)

Categories

1
Оглавление
email@scask.ru