Главная > Математика и ее история
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

19.128. Группы многогранников

Прекрасную иллюстрацию теоремы Кэли, что всякая группа является группой подстановок, обеспечивают правильные многогранники, группы симметрии которых оказываются важными подгруппами Правильные многогранники также показывают нам более буквальное, геометрическое, значение «симметрии». Если мы представим многогранник занимающий область в пространстве, то симметрии можно рассматривать как различные пути подбора Всякая симметрия получена вращением из исходного положения, и произведение симметрий есть произведение вращений.

Мы начинаем с симметрий тетраэдра имеет четыре вершины, поэтому всякая симметрия определяется перестановкой четырех предметов Здесь симметрий, потому что можно поместить на любую из четырех вершин после чего для остающегося треугольника вершин остаются три выбора. Можно проверить (используя тот факт, что перестановка, которая оставляет один элемент неподвижным и вращает три других, — четная), что все симметрии четные перестановки Но подгруппа всех четных перестановок в имеет элементов по упражнениям в разделе 19.2, поэтому группа симметрии именно

Полную группу подстановок можно реализовать симметриями куба. Четыре элемента куба, которые переставляются, — длинные диагонали (рисунок 19.2). Сначала следует проверить, что каждая перестановка диагоналей действительно реализуема. Во время выполнения этого станет очевидно, что положение диагоналей (имея в виду, что конечные точки можно поменять местами), действительно, определяет положение куба (упражнение 19.5.1). также группа симметрии октаэдра, вследствие двойственного отношения между кубом и октаэдром, которое видно на рисунке 19.3. Каждая симметрия куба, несомненно, является симметрией его двойственного октаэдра, и обратно.

Рисунок 19.2: Куб и его диагонали

Таким же образом, двойственное отношение между додекаэдром и икосаэдром (рисунок 19.3) показывает, что они имеют одинаковую группу симметрии. Этой группой оказывается подгруппа четных перестановок в Пять элементов додекаэдра, четные перестановки которых определяют эти симметрии, — это тетраэдры, образованные из множеств четырех диагоналей [см. рисунок 19.4, который взят из Коксетера и Мозера (1980), с. 35].

Рисунок 19.3: Двойственные многогранники

Рисунок 19.4: Тетраэдры в додекаэдре

Более подробную информацию о группах многогранников см. Клейн (1884). Эта книга связывает теорию уравнений с симметриями правильных многогранников и функциями комплексной переменной. Комплексная переменная появляется, когда правильные многогранники заменяются правильными мозаиками сферы и их симметрии дробно-линейными преобразованиями, как в разделе 18.6. Клейн (1876) показал, что, с тривиальными исключениями, все конечные группы дробно-линейных преобразований возникают из симметрий правильных многогранников этим способом.

Правильные многогранники также являются источником другого подхода к группам: представлению порождающими элементами и соотношениями. Гамильтон (1856) показал, что группа икосаэдра может порождаться тремя элементами в зависимости от отношений

Это означает, что каждый элемент группы икосаэдра является произведением (возможно, с повторениями) и, что любое соотношение между следует из отношений (1). Дик (1882) дал похожие представления групп куба и тетраэдра и для групп некоторых конечных мозаик, как часть первого общего обсуждения порождающих элементов и соотношений. Мы вернемся к этому в разделе 19.6.

Упражнения

(см. скан)

1
Оглавление
email@scask.ru