Главная > Математика и ее история
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

20.136. Кватернионы, геометрия и физика

Может быть, в момент открытия Гамильтон увидел, что кватернионы будут заслуживать его внимание всю его жизнь, но сначала даже его лучшие друзья были настроены скептически. 26 октября 1843 года Джон Грейвс написал ему:

Должно быть, вы были очень дерзко настроены, чтобы дать начало счастливой идее, что может быть отлично от Есть ли у вас какой-нибудь представление о существовании в природе процессов, или операций, или явлений, или концепций, аналогичных кругообороту

И получив письмо от Гамильтона, где он дал понять о возможности применения в физике и заявил, что кватернионы, несомненно, можно использовать, чтобы вывести теоремы сферической тригонометрии, Грейвс ответил:

Все же в системе есть нечто, что приводит меня в замешательство. У меня до сих пор нет таких-либо ясных взглядов относительно меры, до которой мы вправе произвольно создавать мнимые числа и наделять их сверхъестественными свойствами. Но предположим, что ваши символы имеют свои физические антитипы, которые могли привести вас к кватернионам, какое право имеете вы на такую удачу, получив свою систему таким изобретательным методом так ваш?

[Другие письма см. в биографии Гамильтона, написанной братом Грейвса, Робертом: Грейвс (1975), т.3, с.443.]

Конечно, вопрос Грейвса об удаче был ироническим, но это все же хороший вопрос. Многие математики и физики поражались правомерности применения чистой математики, чтобы теория чисел и алгебра

стали геометрией и физикой. В случае кватернионов будущее сулило еще больше сюрпризов.

Правда заключалась не только в том, что кватернионы имели скрытый смысл для сферической геометрии, их геометрический аспект уже был открыт дважды раньше! Первом открытием была неопубликованная работа Гаусса (1819) о вращениях сферы, о которой Гамильтон мог не знать; вторым была публикация Родригеса (1840), которая (типично) ускользнула от его внимания.

Результат Гаусса объяснить легче всего, потому что мы уже говорили о нем в разделе 18.6: всякое вращение сферы можно выразить комплексной функцией вида

Любую такую функцию можно представить матрицей ее коэффициентов

и легко проверить, что матрица произведение матриц для Поэтому вращения сферы можно изучать через произведения матриц указанного выше типа, включая пары комплексных чисел Такую матрицу также можно записать в виде четырех действительных параметров если мы положим

И тогда результирующую матрицу мы можем записать так линейную комбинацию четырех особых матриц с коэффициентами

Четыре особые матрицы играют роль в кватернионах, потому что

Действительно, те же матрицы были открыты Кэли (1858), который предложил их так новую реализацию кватернионов. Сегодня, они часто известны так матрицы Паули, особенно, в физике. Они вновь были открыты в квантовой теории, где вращения сферы также важны.

Упражнения

(см. скан)

1
Оглавление
email@scask.ru