Главная > Линейные оптимальные системы управления
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

1.11.4. МОДЕЛИРОВАНИЕ СТОХАСТИЧЕСКИХ ПРОЦЕССОВ

В последних главах настоящей книги стохастические процессы почти всегда представляются с использованием линейных дифференциальных систем, возбуждаемых белым шумом. Это представление стохастического процесса обычно имеет следующую форму. Предположим, что

где

а — белый шум. Выбирая такое представление стохастического процесса V, его можно моделировать. Использоваййе таких моделей может быть обосновано следующим образом.

а) В природе часто встречаются стохастические явления, связанные с воздействием быстро меняющихся флуктуаций на инерционную дифференциальную систему. Типичным примером белого шума, действующего на дифференциальную систему, является тепловой шум в электронной цепи.

б) Как будет видно из дальнейшего, в линейной теории управления почти всегда рассматриваются только среднее значение и. ковариация Стохастического процесса. Для линейной модели ксегда можно аппроксимировать любые полученные экспериментально характеристики среднего значения и ковариационной матрицы с произвольной точностью.

в) Иногда возникает задача моделирования стационарного стохастического процесса с известной спектральной плотностью энергии. В этом случае всегда имеется возможность генерировать стохастический процесс как процесс на выходе линейной дифференциальной системы; при этом матрица спектральных плотностей анергии аппроксимирует с произвольной точностью матрицу спектральных плотностей энергии исходного стохастического процесса.

Примеры 1.36 и 1.37, так же как и задача 1.11, иллюстрируют метод моделирования.

Пример 1.36. Дифференциальная система первого порядка

Предположим, что измеренная ковариационная функция стохастического скалярного процесса о котором известно, что он является стационарным, описывается экспоненциальной функцией

Этот процесс можно моделировать при как состояние дифференциальной системы первого порядка (см. пример 1.35)

где — белый шум интейсивности — стохастическая величина с нулевым средним и дисперсией .

Пример 1.37. Смесительный бак

Рассмотрим смесительный бак из примера 1.31 (разд. 1.10.3) и вычислим для него матрицу дисперсий выходной переменной примере 1.31 предполагалось, что флуктуации концентраций в потоках описываются экспоненциально коррелированными шумами и, таким образом, могут быть смоделированы как решение системы первого порядка, возбуждаемой белым шумом. Добавим теперь к дифференциальному уравнению смесительного бака уравнения моделей стохастических процессов Получим

где

Здесь — скалярный белый шум интенсивности чтобы

получить дисперсию процесса равной примем Для процесса используем аналогичную модель. Таким образом, получим систему уравнений

где Двумерный белый шум имеет интенсивность

Предположим, что в тогда решение уравнения (1.522) относительно матрицы дисперсии Q имеет вид

где

Дисперсия процесса равна , что согласуется с результатом примера 1.32 (разд. 1.10.4).

Categories

1
Оглавление
email@scask.ru