Главная > Вопросы статистической теории радиолокации. Том 2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

8.5.2. Прямоугольный импульс

Рассмотрим прежде всего случай, когда частотная характеристика УПЧ согласована со спектром импульса, а полустробы узки по сравнению с его длительностью. Тогда

и из формулы

Так же, как в случае когерентного дискриминатора, это выражение стремится к нулю при 8 0. Фактически стремится к значению, определяемому длительностью фронта импульса. Зависимость от расстройки идентична с (7.6.3), описывающий ту же зависимость в когерентном дискриминаторе.

При широкополосном УПЧ и прямоугольных полустробах длительности с расстройкой из формулы (8.5.5) получаем

Из этой формулы следует, что при конечной длительности полустробов точность измерения дальности получается конечной при всех и определяется длительностью импульса. Зависимость величины от для различных построена на рис. 8.5, из которого следует, что при достаточно больших отношениях сигнал/шум рассматриваемый дискриминатор некритичен к ширине полосы УПЧ и длительности полустробов.

Рассмотрим еще случай, когда частотная характеристика УПЧ согласована со спектром импульса, а полустробы имеют конечную ширину и прямоугольную форму. В соответствии с тем, как это чаще всего делается на практике, будем считать, что полустробы расположены впритык, т. е. Крутизна дискриминатора при этом пропорциональна

и достигает максимального значения при Дальнейшее расширение полустробов не имеет смысла, так как длительность импульса по нулям на выходе согласованного УПЧ составляет и при мощность полезного сигнала на выходе дискриминатора не увеличивается, а мощность шумовых составляющих растет, постольку поскольку интегрирование шума происходит по все большему интервалу времени.

Рис. 8.5. Эквивалентная спектральная плотность для дискриминатора с широкополосным УПЧ:

Поэтому мы будем считать Подставляя в формулу (8.4.18) выражение (8.5.6) и функцию описывающую прямоугольные полустробы, получаем в результате интегрирования следующее выражение:

где функции, описывающие зависимость составляющих спектральной плотности от отношения

длительностей полустробов и импульса. Эти функции имеют вид

В частности, при коэффициенты принимают значения При малых оба коэффициента имеют порядок Зависимость от построена на рис. 8.6. При малых отношениях сигнал/шум длительность полустроба довольно сильно влияет на точность измерения. При больших отношениях сигнал/шум это влияние менее существенно, если длительность полустробов не очень мала — в области коэффициент а. меняется слабо. При малых зависимость а, от примерно линейна. Таким образом, при согласованном УПЧ выгодно уменьшать длительность полустробов, несмотря на уменьшение крутизны дискриминатора величина уменьшается с уменьшением При очень малых результаты анализа, конечно, не отражают действительности — необходим учет конечной длительности фронта и нелинейностей дискриминационной и флюктуационной характеристик.

Остановимся еще коротко на дискриминаторах с корреляционной обработкой. Для двухканального

дискриминатора с расстроенными каналами нам остается лишь повторить то, что уже было сказано при рассмотрении когерентных дальномеров пп. 7.6.1, 8.3.1). Для дискриминатора с переключением опорных сигналов представляет интерес зависимость эквивалентной спектральной плотности от расстройки.

Рис. 8.6. Влияние отношения и для дискриминатора с согласованным УПЧ на величину

Считая, что длительность стробимпульса, который является в данном случае опорным сигналом, на основании формул (7.6.7) и (8.3.16) получаем

Как следует из этого выражения, эквивалентная спектральная плотность монотонно убывает при уменьшении расстройки, однако даже при точность остается конечной. При величинах расстройки, близких

к спектральная плотность неограниченно увеличивается, что обусловлено уменьшением крутизны. При этом увеличение происходит быстрее, чем в двухканальном дискриминаторе. Оптимум по расстройке, который был в когерентном случае, здесь отсутствует.

Рис. 8.7. Влияние расстройки и отношения сигнал/шум на величину оэкв для дискриминатора с переключением опорных сигналов.

Интересно сравнить точность дискриминатора с переключением опорных сигналов с точностью двухканального корреляционного дискриминатора, величина для которого при совпадающих длительностях импульса и стробимпульсов определяется, очевидно, формулой (8.5.7). Отношение величин для обоих случаев равно

где выражается формулой (8.5.13) при

При малых дискриминатор с переключением опорных сигналов дает проигрыш не менее чем в 2 раза, а при больших не менее чем в 4 раза. В обоих случаях минимальный проигрьий достигается при Зависимость отношения (8.5.14) от расстройки 8 при разных построена на рис. 8.7.

1
Оглавление
email@scask.ru