Главная > Курс теоретической механики
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава V. ДИНАМИКА СИСТЕМЫ МАТЕРИАЛЬНЫХ ТОЧЕК

Динамика системы материальных точек является наиболее важным и интересным разделом теоретической механики. Именно этот раздел дает наиболее полное представление о механическом движении. В динамике системы в основном рассматриваются задачи о движении систем материальных точек с конечным числом степеней свободы (максимальным числом независимых параметров, определяющих положение системы). Главная задача динамики системы — изучение основных методов составления и исследования уравнений движения механических систем и общих свойств движения.

Наиболее примитивный подход к исследованию движения системы, состоящей из материальных точек, будет, очевидно, сводиться к рассмотрению движений каждой отдельной точки системы. При таком подходе должны быть определены все силы, действующие на каждую точку системы, в том числе и все силы взаимодействия между точками. Определяя теперь ускорения каждой точки в соответствии с законом Ньютона, получим для каждой точки три скалярных дифференциальных уравнения движения второго порядка или дифференциальных уравнений движения для всей системы. Дальнейшее исследование сведется в первую очередь к исключению лишних неизвестных и затем к интегрированию уравнений. Зачастую оказывается, что движение определяется меньшим числом параметров, чем имеется уравнений. Поэтому возникает проблема — отыскать такие методы решения задач, которые бы приводили к уравнениям, не содержащим лишних параметров и сразу дающим представление о движении механической системы. Первая такая попытка дать общие методы принадлежит швейцарскому математику и механику Якову Бернулли (1654—1705), который, изучая движение маятника, пытался сводить задачу о движении к задаче о равновесии. Дальнейшее развитие принципа принадлежит Даламберу.

Одновременно с этим Я. Герман и Л. Эйлер разрабатывают свой «Петербургский принцип динамики». Наконец, Лагранж дает общие методы решения задачи о движении механических систем.

Мы начнем изучать динамику системы с анализа связей, накладываемых на систему материальных точек.

1
Оглавление
email@scask.ru