Главная > Курс теоретической механики
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 1. УЧЕНИЕ О СВЯЗЯХ

Рассмотрим механическую систему, состоящую из материальных точек с массами , координаты и скорости которых связаны между собой некоторыми соотношениями, называемыми связями. Связи эти можно выразить аналитически в виде уравнений

Они накладывают ограничения на координаты и скорости точек системы.

Из всех связей выделим наиболее простой тип — линейные связи, которые задаются уравнениями

линейными относительно с коэффициентами зависящими от времени и координат.

Возможные перемещения системы определим как перемещения, удовлетворяющие условиям

В общем случае будем иметь некоторое множество возможных перемещений. Действительным перемещением назовем такое перемещение, которое совершают во времени точки системы при заданных связях под действием активных сил. Действительное перемещение удовлетворяет уравнениям связи. Вообще действительные и возможные перемещения удовлетворяют различным условиям, и действительное перемещение не принадлежит к классу возможных перемещений системы. Если же все 0, то уравнения для возможных перемещений будут совпадать с уравнениями для действительных перемещений, т. е. действительное перемещение будет находиться среди возможных.

Условия для возможных перемещений получим из уравнений для действительных перемещений, положив в последних

т. е. рассматривая в данный момент времени как некоторый параметр, не изменяющийся при возможных перемещениях системы. Таким образом, для определения возможных перемещений системы достаточно рассмотреть все перемещения, которые допускаются связями при «застывшем» времени («застывшие» связи). Так, например, если на материальную точку наложена связь

то возможные перемещения будут удовлетворять условию

и, следовательно, действительные перемещения не находятся среди возможных.

Пример 80. Рассмотрим действительные и возможные перемещения системы, состоящей из ползунка О, движущегося по прямолинейному рельсу по заданному закону и точки соединенной стержнем с шарниром на ползунке, так что стержень может свободно вращаться вокруг шарнира в плоскости чертежа (рис. 182).

Рис. 182

При застывших связях точка О неподвижна, ибо ее движение заранее определено по времени, а время не меняется при рассмотрении возможных перемещений. Возможными перемещениями точки будут перемещения по окружности с центром в точке О. Аналитически связи здесь можно представить уравнением

или, в дифференциальной форме

Для возможных перемещений получим условие

Если ввести параметр и выразить через пего координаты х и у, то, как легко заметить, связи не будут накладывать ограничений на Такой параметр называют свободным параметром, определяющим положение системы.

Определение возможного перемещения, как перемещения из одного состояния системы в другое, сколь угодно близкое к первому, которое приводилось в аналитической статике, не всегда

справедливо в динамике. В динамике рассматриваются и такие связи, при которых возможные перемещения не могут перевести систему в бесконечно близкое положение, удовлетворяющее условиям связи.

Дифференциальные уравнения связей представляют собой уравнения типа Пфаффа. Если такую систему уравнений связей можно путем различных преобразований привести к виду

то уравнения связей называют интегрируемыми, а связи голономными. Если систему уравнений связи нельзя привести к указанному виду, то уравнения связей называют неинтегрируемыми, а связи неголономными.

Пример 81. Исследовать связь вида

наложенную на материальную точку.

Если то уравнение связи интегрируемо, а связь — голономна. Если же то уравнение нельзя вообще привести к виду до тех пор, пока не будет найдена зависимость z от х и у. В этом случае связь будет неголоиомной.

Если связи интегрируемы, то уравнения связей приводятся

и тогда говорят, что связи заданы в конечном виде. Действительные перемещения при этом удовлетворяют соотношениям

а возможные перемещения соотношениям

Если связи, наложенные на систему материальных точек, голономны, то уравнения связей в каждый фиксированный момент времени определяют некоторые гиперповерхности. Возможные перемещения в этом случае можно трактовать как переход из одного положения на этих гиперповерхностях в бесконечно близкое положение. Для неголономных связей вообще такого толкования уже дать нельзя, о чем подробнее будет сказано ниже.

1
Оглавление
email@scask.ru