Главная > Прикладной анализ случайных данных
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

8.4. Оценки ковариационных функций

Рассмотрим теперь две реализации стационарных эргодических случайных процессов Определим другие характеристики процессов — стационарные автоковариационные функции и взаимную ковариационную функцию Чтобы упростить последующие выкладки, примем, что средние значения равны нулю. Оценку взаимной ковариационной функции связывающей заданные на конечном интервале реализации с непрерывным временем, можно записать в виде

Чтобы избежать использования знака модуля, будем в дальнейшем считать величину положительной, так как для отрицательных значений справедливы те же выводы. Оценки ковариационных функций представляют собой частные случаи оценки взаимной ковариационнои функции, когда обе реализации совпадают, т.е. при

Таким образом, путем анализа оценки взаимной ковариационной функции можно получить результаты, применимые к оценкам автоковариационной функции.

Если процессы заданы на интервале а не то можно дать другое определение функции

В эту формулу входит фиксированный интервал интегрирования вместо переменного интервала интегрирования в формуле (8.89). Именно в таком виде выше было дано определение ковариационных функций. Отметим, что оценки средних значений квадратов функций или представляют собой просто частные случаи соотношения (8.89) или (8.91) при . Для упрощения обозначений в последующих выкладках вместо формулы (8.89) будет использоваться формула (8.91). В обоих случаях окончательные результаты будут одинаковы, если считать, что процессы заданы на интервале

Математическое ожидание оценки

Следовательно, независимо от длины реализации величина есть несмещенная оценка функции Средний квадрат ошибки определяется дисперсией

Чтобы упростить последующие преобразования и согласовать результаты со многими физическими приложениями, представляющими наибольший интерес, будем считать, что совместная плотность распределения случайных процессов для любой совокупности фиксированных моментов времени есть функция Гаусса. Этого ограничения можно избежать, вводя некоторые условия интегрируемости для негауссовых частей случайных процессов и не меняя при этом существенным образом окончательные выводы. В случае, когда совместная плотность вероятности процессов нормальна, сами процессы порознь также подчиняются нормальному распределению.

Для гауссовых стационарных случайных процессов с нулевыми средними значениями формула (5.130) дает следующее выражение для четвертого смешенного момента:

Следовательно, дисперсия

Второе равенство можно получить из первого, используя подстановку и меняя затем порядок интегрирования по переменным Если считать, что произведения абсолютно интегрируемы в промежутке то

Этим доказывается, что величина представляет собой состоятельную оценку функции При больших оценка имеет дисперсию

Заслуживают внимания несколько частных случаев соотношения (8.97). Дисперсия оценки ковариационной функции равна

При нулевом сдвиге

Из предположения, что при больших значениях функция стремится к нулю, следует неравенство

Таким образом, при больших

что составляет половину величины (8.99).

1
Оглавление
email@scask.ru