Главная > Прикладной анализ случайных данных
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

7.2.5. ФУНКЦИИ ЧАСТНОЙ КОГЕРЕНТНОСТИ

Вернемся к рис. 7.8. Поскольку выходные процессы не коррелированы, то наблюдаемый спектр выходного процесса равен сумме спектральных плотностей этих трех процессов, причем в этой сумме не участвуют взаимные спектры, а именно

Здесь

Символом обозначена часть спектра не связанная ни с ни Заметим также, что первый выходной процесс на рис. 7.8 совпадает с выходным процессом на рис. 7.9. Первая спектральная плотность

есть обычный когерентный спектр выходного процесса системы с одним входным процессом и одним выходным процессом (рис. 7.9). Здесь

есть функция обычной когерентности между

Вторая составляющая спектральной плотности

где

называется функцией частной когерентности условных процессов показанных соответственно на рис. 7.4 и 7.9. Поэтому

Рис. 7.10. Система с одним условным входным процессом и условным процессом на выходе.

называется частным когерентным спектром выхода системы с условным входным процессом и условным выходным процессом (рис. 7.10), где соответствует и (рис. 7.8).

Рис. 7.10 полностью совпадает с рис. 7.9, за исключением того, что:

1) исходные процессы заменены условными процессами

2) исходные спектральные плотности заменены условными спектральными плотностями

3) функция обычной когерентности заменена функцией частной когерентности

Это сопоставление показывает, что функции частной когерентности играют такую же роль, как и функции обычной когерентности с тем только отличием, что первые определяются по условным процессам, а вторые — по исходным. Из неравенства для взаимных спектральных плотностей (5.82) следует, что для всех

Система с двумя входами, на которые поступают некоррелированные процессы, и одним выходом, изображенная на рис. 7.8, эквивалентна двум отдельным системам с одним входом и одним выходом, показанным на рис. 7.9 и 7.10. Заметим, в частности, что входной процесс (рис. 7.9) преобразуется в выходной процесс а условный входной процесс (рис. 7.10) преобразуется в выходной процессу. Этот входной процесс не влияет на выходной процесс Еще одно важное замечание заключается в том, что взаимный спектр совпадает с взаимным спектром Другими словами, если из исключен вклад за счет корреляции, что дает процесс то при определении не обязательно исключать вклад за счет корреляции, т. е. не обязательно строить процесс Для того чтобы убедиться в этом, докажем соотношение

Из соотношений (7.44) и (7.58) имеем

Тогда

Однако

Этим соотношение (7.68) доказано.

Выведем формулу для спектра шума на выходе системы, изображенной на рис. 7.10, совпадающего с искомым спектром шума на выходе системы, показанной на рис. 7.8. Этот спектр имеет вид

Подставив вместо его выражение из формулы (7.54), получим

Функция множественной когерентности определенная формулой (7.35), для двух коррелированных входных процессов равна

Эта формула устанавливает связь функции множественной когерентности с функциями обычной и частной когерентности при данном упорядочении двух процессов, т. е. если предшествует

Описанный подход будет обобщен на системы с тремя произвольными коррелированными процессами на входе и одним процессом на выходе, причем аналогичные процедуры можно построить для анализа общих систем с несколькими входами и одним выходом. Следует отличать исходные модели с неупорядоченными входами от условных моделей с упорядоченными входами, которые строятся при обработке данных. В примерах 7.3 и 7.4 анализируются результаты наблюдений системы с тремя входами и одним выходом. Соответствующие формулы выводятся в разд. 7.3.

ПРИМЕР 7.3. ВЫЧИСЛЕНИЕ ФУНКЦИИ ЧАСТНОЙ КОГЕРЕНТНОСТИ. Рассмотрим систему с тремя входами и одним выходом, на который

накладывается шум. Тракты системы представляют собой низкочастотные RС-фильтры (рис. 7.11). Заметим, что входной процесс коррелирован как с так и с . В какой степени входной процесс когерентен с выходным процессом по своему тракту?

Для того чтобы ответить на этот вопрос, в полосе частот примерно от 0 до 1000 Гц были вычислены функции обычной и частной когерентности между входным процессом и выходным процессом с разрешением 32 Гц по реализации длиной . Результаты этих вычислений представлены на рис. 7.12. Рис. показывает, что когерентность между и довольно высокая по всей полосе частот, она близка к единице на низких частотах, а на высоких частотах равна примерно 0,95. Однако частично это связано с тем, что и когерентны с и вносят свой вклад в выходной процесс непосредственно по своим собственным трактам. Функция частной когерентности и указывает на меньшую когерентность (до 0,75), как видно из рис. 7.12, б.

ПРИМЕР 7.4. ВЫЧИСЛЕНИЕ ФУНКЦИИ МНОЖЕСТВЕННОЙ КОГЕРЕНТНОСТИ. Рассмотрим снова систему с тремя входами и одним выходом, описанную в примере 7.3 и показанную на рис. 7.11. На рис. 7.13 изображена функция множественной когерентности, вычисленная для выходного процесса и трех входных процессов . Заметим, что функция множественной когерентности принимает большие значения (более 0,96) во всей полосе частот, но с ростом частоты несколько уменьшается. Единственная причина, по которой функция множественной когерентности не равна единице во всей полосе частот, — наличие инструментального шума на выходе. Поскольку инструментальный шум имеет равномерный спектр, а входные процессы проходят через фильтры низких частот, то относительный вклад инструментального шума в суммарный выходной сигнал растет с увеличением частоты. Об этом отчетливо свидетельствует уменьшение функции множественной когерентности по мере увеличения частоты.

Рис. 7.11. Система с тремя входными и одним выходным процессами и шумом на выходе.

Рис. 7.12. (см. скан) Функции когерентности между входным процессом и выходом системы, изображенной на рис. 7.11: а — функция обычной когерентности; 6 — функция частной когерентности.

1
Оглавление
email@scask.ru