Главная > Курс локальной дифференциальной геометрии
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

9. Основная теорема.

Всякой связности (3.1) многообразия мы сопоставили два тензорных поля кривизны и кручения (а также поля их ковариантных производных возрастающих порядков по правилам § 5). Здесь мы ставим себе обратную задачу, будет ли знание этих тензоров в некоторой окрестности на многообразии определять связность.

Рассмотрим геодезические, проходящие через точку (мы предположим для упрощения записи, что покрывающие целую окрестность этой точки (например, с достаточно малым Будем определять их точки при помощи параметра Положим на геодезической, определенной уравнениями (8.5),

Уравнения (8.5) дают

откуда

Следовательно, в некоторой окрестности точки образуют систему координат, называемую нормальной в точке Всякая другая нормальная система координат должна быть такой, что уравнения геодезических, проходящих через имеют форму

Всякому вектору связанному с преобразование ставит в соответствие некоторый вектор и наоборот; следовательно, это наиболее общее центро-аффинное преобразование

где константы и

Приведя координаты к нормальному виду, мы теперь канонизируем представление связности, потребовав, чтобы перенос репера в вдоль всякой геодезической был параллельным переносом, т. е. чтобы

или

Положим тогда где произвольные константы, рассмотрим бесконечно малый контур с вершинами

Вернемся к формулам (4.1). Они запишутся в виде

откуда, обозначая через и компоненты тензоров кручения и кривизны в выбранной системе координат, имеем

Но представимо в виде

откуда

Рассматривая и как константы, мы видим, что будут функциями одного Положим поэтому отсюда

уравнения (9.1) запишутся в виде

Это линейная дифференциальная система (интегрирования которой можно свести к квадратурам), которая позволяет определить по их начальным значениям для Проведя интегрирование, мы подставим в результат, заменив затем и через соответственно; тогда получим определяющие связность. Мы можем высказать следующий результат:

Знание тензоров кручения и кривизны в каждой точке многообразия линейной аффинной связности достаточно для определения этой связности.

Другими словами, если между двумя многообразиями с линейной аффинной связностью можно установить такое точечное соответствие, что тензоры кривизны и кручения будут равны в соответствующих точках, то связности могут быть представлены, по-крайней мере локально, одними и теми же уравнениями (3.1) с точностью до обозначений. Два таких пространства называются эквивалентными или наложимыми.

Геометрия многообразия снабженного связностью полностью определяется, по крайней мере локально, заданием тензоров кручения и кривизны.

Из формул типа (5.5) и (5.6) (с условием в начале координат) следует, с другой стороны, что знание последовательных ковариантных производных тензора позволяет определить дифференциалы его компонент в репере, связанном с каждой точкой, и, далее, их частные производные. Рассмотрим случай аналитической связности в окрестности некоторой точки. Формулы (4.4), (4.5) и (4.6) показывают прежде всего, что тензоры кручения и кривизны — аналитические функции координат. Задание последовательности их частных производных определяет их в целой окрестности. Итак:

Аналитическая связность локально определяется заданием в некоторой точке тензоров кручения и кривизны и последовательности их ковариантных производных.

Замечание. Плоская связность. Когда тензоры кручения и кривизны тождественно равны нулю то уравнения (4.4) являются уравнениями структуры аффинной группы; пространство поэтому локально эквивалентно аффинному пространству связность, определенная в является плоской связностью. Из уравнений (9.2) мы непосредственно получаем интегрированием, что это естественная связность для

Формула (5.5) показывает тогда, что ковариантный дифференциал совпадает с обыкновенным дифференциалом.

1
Оглавление
email@scask.ru