Главная > Краткий справочник для инженеров и студентов
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

2.3. Второе начало термодинамики

Формулировка второго начала. Приведем две наиболее известные формулировки:

1. Невозможен процесс, единственным результатом которого было бы совершение работы за счет теплоты, взятой у теплового резервуара при постоянной температуре (формулировка Томсона). Эта же формулировка, но выраженная другими словами, утверждает невозможность создания вечного двигателя второго рода (т.е. производящего работу за счет внутренней энергии теплового резервуара).

2. Невозможен процесс, единственным результатом которого была бы передача энергии от более холодного тела к более горячему (формулировка Клаузиуса).

Формулировки Томсона и Клаузиуса эквивалентны.

Теорема Карно. Циклом Карно называют цикл, в котором рабочее тело получает теплоту только от резервуара при постоянной температуре (нагревателя), а отдает — только резервуару при постоянной температуре (холодильнику). Теорема Карно утверждает, что КПД произвольного цикла Карно не может превышать КПД

обратимого цикла Карно, работающего при тех же Из этого немедленно следует, что КПД обратимого цикла Карно зависит только от и и не зависит от природы рабочего тела.

Покажем в общих чертах, как можно доказать теорему Карно. Предположим, что КПД обратимой машины меньше, чем необратимой. Подберем объем рабочего тела обратимой машины так, чтобы она совершала за цикл такую же работу, как необратимая. С учетом (15) неравенство для КПД приобретает вид откуда имеем Пустим обратимую машину в обратную сторону так, чтобы работа необратимой машины потреблялась обратимой. За цикл объединенной машины ее работа будет равна нулю, а нагреватель получит энергию целиком взятую у холодильника. Мы пришли к противоречию с формулировкой Клаузиуса.

Так как нам известен КПД одной из машин Карно — газовой (16), то теорему Карно можно записать так:

причем равенство соответствует обратимому циклу Карно.

Термодинамическая шкала температур. Теорема Карно позволяет определить шкалу температур, не зависящую от свойств конкретных тел. Отношение температур двух тел определяют, присоединив к ним обратимую машину Карно; так как отношение зависит только от их температур, то его можно принять равным отношению термодинамических температур: Как видно из (17), отношение термодинамических температур равно отношению газовых температур (в той области, где газовая шкала определена).

Второе начало: вычисление внутренней энергии. Второе начало термодинамики позволяет вывести важное соотношение для внутренней энергии простой системы, которое не может быть получено в рамках первого начала:

Покажем, как можно получить (18) из теоремы Карно. Рассмотрим (бесконечно) малый обратимый цикл Карно и изобразим его в координатах . Работа системы за цикл, равная площади маленького параллелограмма (рис. 14), не изменится при замене кусочков адиабат вертикальными отрезками, длина которых равна Умножив на высоту получим Теплота, полученная на верхней изотерме, равна где для приращения при постоянной температуре использовано (8). Из теоремы Карно и уравнения (17) имеем

откуда получим (18).

Рис. 14.

Приведем несколько применений формулы (18).

1) Внутренняя энергия идеального газа. Подставим в (18) уравнение состояния . В результате получим т.е. внутренняя энергия идеального газа не зависит от объема.

2) Внутренняя энергия газа Ван-дер-Ваальса. Выразив давление из уравнения состояния (3) и подставив в (18), приходим к формуле

Кроме того, имеем

т.е. не зависит от объема. В области температур, где слабо зависит от Т, можно записать

3) Общая формула для Подставляя (18) в уравнение (9) и фиксируя давление получим:

(здесь использовано соотношение между производными, рассмотренное в конце разд. 2.1). Неотрицательность полученного выражения следует из условия механической устойчивости:

Неравенство Клаузиуса. Неравенство (17) является частным случаем неравенства Клаузиуса, относящегося к любому замкнутому циклу. Если в замкнутом цикле система получает теплоты от внешних резервуаров, имеющих температуры то удовлетворяется неравенство

Для обратимого процесса неравенство превращается в равенство, а температура резервуара, с которым система в данной точке цикла обменивается теплом, равна температуре системы: . В этом случае получим

Равенство (21) служит основой для определения еще одной функции состояния — энтропии (см. разд. 2.4).

1
Оглавление
email@scask.ru