Главная > Краткий справочник для инженеров и студентов
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

1.8. Поле тяготения

Закон всемирного тяготения. Две точечные массы находящиеся на расстоянии друг от друга, притягиваются с силой тяготения (гравитационной силой), равной

где — гравитационная постоянная. Сила тяготения — центральная сила, т.е. она действует вдоль линии, соединяющей частицы.

Силу, действующую на материальную точку массой в центральном поле тяготения (гравитационном поле), создаваемым неподвижной точечной массой М, можно записать в виде (см. разд. 1.3):

Тем самым роль «заряда» для поля тяготения играет инертная масса . Иногда это свойство формулируют как равенство гравитационной и инертной масс. Потенциальную энергию точки в центральном поле тяготения можно найти, используя соотношение между силой и потенциальной энергией (формула т. е. Константу обычно полагают равной нулю, т.е. принимают за нуль потенциальную энергию на бесконечности:

Принцип суперпозиции. Если поле тяготения создается несколькими точечными массами то сила, действующая на материальную точку массой и ее потенциальная энергия вычисляются по формулам:

где — радиус-вектор точки массой — радиус-вектор точки массой Если источник поля представляет собой непрерывно распределенную массу, то суммирование в (31) надо заменить интегрированием.

Напряженность и потенциал поля тяготения. Из уравнений (31) видно, что как сила, действующая на материальную точку массой в поле тяготения, так и ее потенциальная энергия пропорциональны Значит, удельные значения массы и энергии (отношения ) не зависят от величины т.е. представляют собой характеристики поля. Их называют, соответственно, напряженностью и потенциалом поля тяготения:

Напряженность поля имеет простой физический смысл: она представляет собой ускорение свободного падения любой точечной массы, помещенной в данную точку поля. Напряженность и потенциал поля тяготения, создаваемого точечной массой М, имеют вид:

Напряженность и потенциал поля, создаваемого несколькими массами, вычисляются с помощью принципа суперпозиции. Запись уравнения аналогична (31), для разнообразия запишем ответ для случая распределенной массы:

Пример 1. Показать, что напряженность поля тяготения внутри тонкого сферического слоя равна нулю.

Решение. Для доказательства рассмотрим вклад в напряженность поля в точке А небольших участков В и С сферы, отсекаемых от нее тонким конусом с вершиной в точке А (рис. 9). Отношение площадей этих участков, а значит, и отношение их масс, равно отношению квадратов расстояний от этих участков до точки А. Следовательно, напряженности, создаваемые этими участками в точке А, равны по величине.

Рис. 9.

Напряженность поля, создаваемого тонкой сферой массой М вне ее, оказывается равной напряженности, создаваемой точечной массой М, помещенной в центр сферы. Доказательство этого результата требует громоздкого интегрирования (первым его проделал Ньютон). В гл. 3 это утверждение будет доказано с помощью теоремы Гаусса. Такой же ответ годится для любой сферически распределенной массы, в частности, для любой сферической планеты.

Пример 2. Пусть масса М распределена по отрезку длиной Вычислить напряженность и потенцией! на продолжении отрезка, на расстоянии х от его центра.

Решение. Масса заключенная на отрезке длиной равна Интегрируя, получим

Видно, что симметричное, но несферическое тело нельзя заменить точечной массой, помещенной в ее центр. Этот пример является также иллюстрацией того, что напряженность и потенциал связаны соотношением аналогичным соотношению (16).

Движение в центральном поле тяготения. Законы Кеплера. Движение в центральном поле тяготения подчиняется общим законам движения в центральном поле. Однако оно обладает некоторыми особенностями, отраженными в первом и третьем из законов Кеплера, сформулированных им для планет Солнечной системы.

Первый закон Кеплера утверждает, что финитное движение материальной точки в центральном поле тяготения происходит по замкнутой траектории — эллипсу, в одном из фокусов которого находится центр силы притяжения (Солнце).

Второй закон Кеплера фиксирует постоянство секторной скорости, т.е. скорости «заметания» площади радиусом-вектором движущейся точки. Он относится к любому центральному полю и является прямым следствием закона сохранения момента импульса (см. пример 2 из разд. 1.6).

Третий закон Кеплера утверждает, что квадраты периодов движения относятся как кубы больших полуосей эллиптических орбит:

Дополним первый закон Кеплера утверждением, что инфинитное движение в центральном поле тяготения происходит либо по параболе либо по гиперболе . В качестве дополнения к третьему закону Кеплера приведем связь между удельной энергией движения и большой полуосью: Видно, что период движения однозначно определяется удельной энергией движущегося тела.

Космические скорости. Первой космической скоростью называют скорость движения по круговой орбите вблизи поверхности планеты. Она определяется из уравнения движения спутника и равна (Для Земли

Вторая космическая скорость — минимальная скорость, которую надо сообщить телу на поверхности планеты, чтобы оно преодолело силу тяготения и ушло на бесконечность. Как видно из разд. 1.7, условием инфинитности движения является неравенство О, т.е. вторая космическая скорость находится из уравнения и равна (Для Земли )

1
Оглавление
email@scask.ru