Главная > Краткий справочник для инженеров и студентов
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3.3. Системы линейных уравнений

Система линейных уравнений имеет вид

где — коэффициенты; — свободные члены; — неизвестные величины.

Решением этой системы называется совокупность чисел которые, будучи подставлены вместо неизвестных в уравнения, обращают эти уравнения в тождества. Система уравнений называется совместной, если она имеет хотя бы одно решение. Если же система не имеет ни одного решения, то она называется несовместной.

Совместная система называется определенной, если она имеет только одно решение, и неопределенной, если она имеет более одного решения.

Матрицы

называются соответственно матрицей и расширенной матрицей системы (2).

Теорема Кронекера-Капелли. Для совместности системы (2) необходимо и достаточно, чтобы ранг матрицы этой системы был равен рангу расширенной матрицы:

Правило Крамера. Если ранг матрицы совместной системы равен числу ее неизвестных, то система является определенной. Если число неизвестных системы (2) совпадает с числом уравнений и матрица системы невырожденная то система имеет единственное решение, которое находится по правилу Крамера:

В этих формулах определитель системы, а — определитель, полученный из определителя системы заменой столбца столбцом свободных членов

Матричное решение системы. Система линейных уравнений (2) может быть записана в матричной форме

где А — матрица системы; X — матрица-столбец неизвестных; В — матрица-столбец свободных членов. Если матрица А квадратная и невырожденная, то решение системы (3) может быть записано в матричной форме:

Равносильные системы уравнений. Две системы линейных уравнений называются равносильными, если множества их решений совпадают. Нахождение решений системы линейных уравнений основано на переходе к равносильной системе, которая проще исходной. Укажем простейшие операции, которые приводят к равносильной системе:

1) перемена местами двух уравнений в системе;

2) умножение какого-либо уравнения системы на действительное число (отличное от нуля);

3) прибавление к одному уравнению другого уравнения, умноженного на произвольное число.

Неизвестное называется разрешенным или базисным, если какое-нибудь уравнение системы содержит его с коэффициентом 1, а во все остальные уравнения не входит.

Если каждое уравнение системы содержит разрешенное неизвестное, то такая система называется разрешенной. Ее неизвестные, не являющиеся базисными, называются свободными.

Для отыскания всех решений совместной системы линейных уравнений достаточно найти равносильную ей разрешенную систему. Если все неизвестные окажутся базисными, то разрешенная система дает значения этих неизвестных, составляющие единственное решение исходной системы. В противном случае выражают базисные неизвестные через свободные.

Метод Жордана — Гаусса. Запишем систему линейных уравнений (2) в виде таблицы

Жордановым преобразованием системы с разрешающим элементом называется следующая последовательность действий:

1) умножение строки таблицы на число ;

2) прибавление к первой строке таблицы ее строки (полученной после первого действия), умноженной на —

3) прибавление ко второй строке строки, умноженной на — и т. д.

После этих преобразований неизвестное станет разрешенным, все коэффициенты столбца будут равны нулю, кроме

Проводя последовательно жордановы преобразования с разрешающими элементами, взятыми в различных строках, получим разрешенную систему, равносильную исходной.

Если в результате преобразований все коэффициенты при неизвестных в какой-нибудь строке окажутся равными нулю, а свободный член этой строки не будет равным нулю, то данная система уравнений несовместна. Если же получится строка, состоящая из одних нулей, то она вычеркивается из таблицы.

Пример 1. Решить систему уравнений

Решение. Запишем эту систему в виде таблицы и проведем ее преобразование к разрешенному виду в шесть шагов:

В приведенных таблицах обведены разрешающие элементы. На первом шаге было произведено вычитание из первой и третьей строк удвоенной второй строки; на втором шаге — вычитание из третьей строки первой; на третьем шаге — деление третьей строки на 3; на четвертом шаге к первой строке была прибавлена третья, умноженная на 7, а ко второй — третья, умноженная на —2; на пятом шаге первая строка была разделена на 11; на шестом шаге ко второй строке была прибавлена первая, умноженная на 3. В результате исходная система принимает следующий разрешенный вид:

В итоге имеем решение

Пример 2. Решить систему уравнений

Решение. С помощью жордановых преобразований эта система приводится к разрешенной:

Следовательно, совокупность всех решений исходной системы задается формулами где принимают любые действительные значения.

1
Оглавление
email@scask.ru