Главная > Лекции по аналитической геометрии
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Задачи к главе XV

Задача 64. Даны две точки на расстоянии 2а друг от друга: . Найти геометрическое место точек, произведение расстояний которых до точек равно

Решение. Введем прямоугольную систему координат, принимая за ось абсцисс прямую а за ось ординат перпендикуляр к прямой проведенный через середину О отрезка этой системе

Пусть произвольная точка искомого геометрического места. Тогда

или, в координатах,

Преобразуя это уравнение, приведем его к виду

Перейдем к полярным координатам, принимая за полюс точку О, а за полярную ось луч . Имеем

Вставляя эти значения х и у в уравнения (1), получим

или

(сокращая на мы не потеряли ни одной точки, так как значение подумается при ).

По уравнению (2) нетрудно составить себе представление о полученной кривой. Она изображена на рис. 255. Эта кривая носит название лемнискаты Бернулли.

Задача 65. Дана точка О и прямая d на расстоянии от точки О (рис. 256). Вокруг точки О вращается луч, пересекающий прямую d в переменной точке В. На этом луче по обе стороны от точки В откладываются отрезки

где А — основание перпендикуляра, опущенного из точки О на прямую

Составить уравнение линии, описываемой точками в полярной системе координат, принимая за полюс точку О, а за полярную ось луч ОА.

Рис. 255.

Рис. 256.

Перейти затем к декартовым координатам, взяв прямоугольную систему координат, соответствующую данной полярной системе.

Решение. Точки кривой будут получаться для значений , лежащих в интервале

пусть сначала

Обозначим через точку луча ОВ, ближайшую к точке О, а через — точку, лежащую за прямой d. Тогда

Итак,

Оба уравнения можно объединить и одно, записав их в виде

При

точки совпадают с точкой А.

Когда возрастает, оставаясь положительным, монотонно убывает

В самом деле, в равенстве

умножим и разделим правую часть на тогда это равенство после упрощений примет вид

откуда и следует, что монотонно убывает с возрастанием и стремится к нулю при

Таким образом, когда возрастает от нуля до точка описывает дугу, начинающуюся в точке А, концом которой является точка О, предельная для этой дуги, но ей не принадлежащая.

Посмотрим теперь, как ведет себя точка когда оставаясь положительиым, возрастает от 0 до . Из выражения для гг непосредственно видно, что монотонно возрастает с возрастанием и при

Выясним, не будет ли у нашей кривой асимптот. Найдем абсциссу точки

Отсюда следует, что при , т. е. что прямая

является вертикальной асимптотой пашей кривой.

Из выражений для видно, что, когда меняется от 0 до , точка описывает кусок кривой, асимптотически приближающейся к прямой

а точка описывает дугу, начинающуюся и точке А и имеющую точку О своей предельной точкой.

Из этих соображений можно составить себе представление о виде кривой. Она изображена на рис. 256. Эта кривая называется строфоидой.

Переходим к декартовым координатам. Положим

и подставим эти значения в уравнение (3). Мы будем иметь

или

Возводим это равенство в квадрат:

и освобождаемся от знаменателя, умножая обе части равенства на получим

или (после небольших преобразований)

или, наконец, деля обе части равенства на

Уравнения (4) и (5) не равносильны: координаты , не удовлетворяя уравнению (4), обращают в нуль левую часть уравнения (5). Постороннее решение получилось от умножения обеих частей уравнения на (мы сначала умножили обе части уравнения на а потом после преобразований, не нарушающих равносильности, разделили обе части уравнения на возведение в квадрат обеих частей уравнения (4) посторонних решений не принесло, так как справа стоял двойной знак

Строфоида—кривая третьего порядка.

Задача 66. По окружности радиуса а с центром в начале прямоугольной системы координат перемещается точка С. Из этой точки опускаются перпендикуляры: СА — на ось СВ — на ось и СМ — на прямую АВ (рис. 257). Линия, описываемая точкой М при движении точки С по окружности, называется астроидой. Составить параметрические уравнения астроиды, принимая за параметр угол от оси до луча ОС.

Решение. Опустим из точки М перпендикуляры МР и MQ на оси Тогда будем иметь

Далее,

и, наконец,

Сопоставляя полученные равенства, найдем

Точно так же, рассматривая последовательно треугольники РМА, MCA и АОС, найдем:

откуда

Так как точки С и М всегда принадлежат одной и той же четверти, то отсюда следует, что знаки х и у совпадают соответственно со знаками и .

Рис. 257.

Рис. 258.

Поэтому для астроиды (рис. 258) получаем следующие параметрические уравнения:

Замечание. Возводя каждое из этих равенств в степень с показателем — и складывая, исключим параметр t и получим уравнение астроиды в виде

Задача 67. Написать уравнение поверхности, получающейся при вращении окружности

вокруг оси .

Решение. Пусть — произвольная точка искомой поверхности, - расстояние точки до оси .

По определению поверхности вращения вместе с точкой М ей принадлежат и все точки окружности радиуса d с аппликатой и с центром на оси .

Рис. 259.

Эта окружность пересекает плоскость в двух точках . По крайней мере одна, из этих точек принадлежит линии, от вращения которой получается данная поверхность, в нашем случае — окружности

Другая точка принадлежит линии, лежащей в плоскости и симметричной с данной линией относительно оси . В нашем случае это будет окружность

По определению при вращении обе линии дают одну и ту же поверхность. Таким образом, имеют место равенства

Но

Поэтому имеем:

После возведения в квадрат, что не приносит посторонних решений благодаря двойному знаку ?, и простых преобразований получим окончательно

или

Эта поверхность называется тором (рис. 259).

1
Оглавление
email@scask.ru