Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 30. Магнитное поле постоянных токовЕсли в проводнике течет отличный от нуля полный ток, то средняя плотность тока в нем может быть представлена в виде суммы
Первый член, связанный с намагниченностью среды, не дает вклада в полный ток, так что полный перенос заряда через поперечное сечение тела определяется интегралом Распределение тока j по объему проводника определяется указанными в § 21 уравнениями, в которые не входит создаваемое этими же токами магнитное поле (при условии пренебрежения влиянием поля на свойства проводимости самого металла). Поэтому задача об определении магнитного поля токов должна решаться по заданному распределению последних. Уравнения этого поля отличаются от полученных в § 29 уравнений наличием члена
Плотность тока проводимости j, пропорциональная напряженности электрического поля, является величиной ограниченной, не обращающейся в бесконечность, в частности и на границе раздела двух сред. Поэтому наличие правой части в уравнении (30,2) не отражается на граничном условии непрерывности тангенциальных компонент Н. Для решения уравнений (30,1-2) удобно ввести векторный потенциал А, положив
в результате чего уравнение (30,1) удовлетворяется тождественно. Равенством (30,3) векторный потенциал еще К нему можно прибавить, не нарушая (30,3), любой вектор вида
Уравнение для А получается подстановкой (30,3) в (30,2). При линейной связи
В таком виде это уравнение справедливо для любой неоднородной среды. В однородной среде
Если же мы имеем дело с совокупностью двух или более различных соприкасающихся сред, каждая из которых обладает своей магнитной проницаемостью Уравнения поля упрощаются для плоской задачи определения магнитного поля в среде, не ограниченной и однородной в одном направлении (которое мы примем в качестве направления оси z), причем создающие поле токи тоже направлены везде вдоль оси z, а их плотность
Поэтому уравнение (30,5) приводится к виду
т. е. мы действительно получаем одно уравнение для одной скалярной величины Для кусочно-однородной среды (30,7) сводится к уравнению
с граничным условием непрерывности Ли — на поверхности раздела. Магнитное поле определяется совсем элементарно, если распределение токов симметрично относительно оси
являющейся интегральной формулой уравнения (30,2). Именно,
где Сведение векторного уравнения (30,5) к одному скалярному уравнению возможно также и при аксиально-симметричном распределении круговых токов, т. е. при распределении, которое в цилиндрических координатах
Векторный потенциал ищем в виде
и
Уравнения магнитного поля токов могут быть решены в общем виде в важном случае, когда магнитными свойствами среды можно пренебречь, т. е. можно положить везде
без каких бы то ни было условий на границах раздела различных сред (в том числе на границе проводника, по которому течет ток). Решение этого уравнения, обращающееся на бесконечности в нуль, есть
где
где радиус-вектор R направлен из
Если проводник, по которому течет ток, достаточно тонок (тонкий провод) и мы интересуемся лишь полем в окружающем его пространстве, то толщиной проводника можно пренебречь. В дальнейшем мы неоднократно будем рассматривать такие, как говорят, линейные токи. Интегрирование по объему проводника заменяется в этом случае интегрированием по его контуру. Именно, формулы для линейных токов получаются из формул, относящихся к объемным токам, заменой в последних
где J — полный ток, протекающий по проводнику. Так, из формул (30,12-13) получим
Вторая из этих формул выражает собой закон Био и Савара. Такие простые формулы для магнитного поля линейных токов не связаны даже с требованием Решение уравнения (30,6) для поля в окружающей проводник среде будет поэтому
для любого значения магнитной восприимчивости среды. Таким образом, наличие среды приводит лишь к изменению магнитной индукции в Задача об определении магнитного поля линейных токов может решаться и как задача теории потенциала. Поскольку объемом проводников мы пренебрегаем, то фактически речь идет об определении поля в пространстве, во всем объеме которого (за исключением только особых линий — линейных токов) токи отсутствуют. Но в отсутствие токов постоянное магнитное поле обладает скалярным потенциалом, удовлетворяющим (в однородной среде) уравнению Лапласа. Между потенциалом магнитного поля и электрическим потенциалом имеется, однако, существенное различие. Потенциал электрического поля всегда является однозначной функцией. Это есть следствие того, что Если система токов сосредоточена в конечной области пространства (а
где
есть полный магнитный момент системы. Для линейного тока это выражение принимает вид
и может быть преобразовано в интеграл по поверхности, ограниченной контуром тока. Произведение
В частности, для плоского замкнутого линейного тока магнитный момент равен просто В заключение этого параграфа остановимся еще на вопросе о потоке энергии в проводнике. Диссипируемая в проводнике (в виде джоулева тепла) энергия черпается из энергии электромагнитного поля. В стационарном случае уравнение непрерывности, выражающее собой закон сохранения энергии, имеет вид
где
формально совпадающим с выражением для вектора Пойнтинга для поля в пустоте. В этом легко убедиться прямой проверкой: вычисление Независимо от этого вывода, формула (30,20) однозначно следует из очевидного условия непрерывности нормальной компоненты S на поверхности тела, если при этом учитывать непрерывность
|
1 |
Оглавление
|