Главная > Теоретическая физика. Т. VIII. Электродинамика сплошных сред
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Задачи

1. Найти поле заряженного проводящего круглого диска (радиуса ), выразив его в цилиндрических координатах. Найти распределение заряда на диске.

Решение. Распределение заряда получается путем перехода в формуле (4,16) к пределу причем отношение в соответствии с (4,3). Это дает

Рис. 10.

Потенциал поля во всем пространстве определяется (4,19), в которой полагаем и выражаем через помощью уравнения (4,1) при

Вблизи края диска вводим вместо координаты согласно (рис. 10) и находим

в согласии с общим результатом задачи 3 § 3.

2. Определить квадрупольный электрический момент заряженного эллипсоида.

Решение. Тензор квадрупольного момента заряженного проводника определяется как — его полный заряд, а черта означает усреднение по закону

Очевидно, что оси эллипсоида являются в то же время главными осями тензора Воспользовавшись для о формулой (4,16), а для элемента поверхности эллипсоида выражением

(-единичный вектор нормали к поверхности эллипсоида), получим

(интегрирование по производится дважды по площади сечения эллипсоида плоскостью ). Таким образом,

3. Найти распределение зарядов на поверхности незаряженного проводящего эллипсоида во внешнем однородном поле.

Решение. Согласно формуле (1,9) имеем

(элемент длины вдоль направления нормали к поверхности эллипсоида есть согласно (4,5) . С помощью (4,24) и учитывая, что

получим

При произвольном направлении внешнего поля относительно осей х,y,z эллипсоида

4. То же для незаряженного круглого плоского диска (радиуса а), расположенного параллельно полю Определить дипольный момент диска.

Решение. Рассматриваем диск как предел эллипсоида вращения при стремлении полуоси с к нулю. При этом коэффициент деполяризации вдоль этой оси (ось ) стремится к 1, а вдоль осей нулю по закону

следующему из (4,34).

Компонента единичного вектора нормали к поверхности эллипсоида вращения стремится к нулю по закону

Поэтому плотность зарядов

где — полярные координаты в плоскости диска.

Дипольный момент диска определяется по формуле (4,26) и равен

Отметим, что он пропорционален а не «объему» диска .

5. Определить потенциал поля вне незаряженного проводящего эллипсоида вращения, расположенного своей осью симметрии параллельно внешнему однородному полю.

Решение. Для вытянутого эллипсоида вращения , поле в направлении оси получим, вычислив интеграл в формуле (4,24),

Координата связана с координатами посредством

причем в пространстве вне эллипсоида .

Для сплюснутого эллипсоида поле направлено вдоль оси . В связи с этим в интегралах в (4,24) надо заменить на и взять . В результате получим

причем координата связана с координатами посредством

6. То же, если ось симметрии эллипсоида перпендикулярна к внешнему полю.

Решение. Для вытянутого эллипсоида (поле в направлении оси ):

Для сплюснутого эллипсоида (поле в направлении оси ):

7. Однородное поле направленное вдоль оси (в полупространстве ограничено заземленной проводящей плоскостью с круглым отверстием. Определить поле и распределение зарядов на плоскости.

Решение. Плоскость с круглым отверстием радиуса а с центром в начале координат рассматриваем как предельный случай однополостного гиперболоида вращения

при Эти гиперболоиды представляют собой одно из семейств координатных поверхностей сплюснутой сфероидальной системы координат с Декартова координата z выражается согласно (4,9) через посредством причем корень должен быть взят со знаком или соответственно в верхнем и нижнем полупространствах.

Ищем решение в виде и для функции получаем

(постоянную интегрирования полагаем равной нулю в соответствии с условием при , т. е. при ). При этом отрицательного аргумента надо понимать как

а не как — . В противном случае потенциал испытывал бы разрыв непрерывности на плоскости отверстия Постоянный коэффициент выбираем так, чтобы при (т. е. при ) было и окончательно получаем

На проводящей поверхности и потенциал, как и следовало, обращается в нуль.

На больших расстояниях от отверстия имеем и и потенциал (в верхнем полупространстве) приобретает вид

т. е. поле дипольного типа, соответствующее дипольному моменту

Напряженность поля убывает как и потому поток поля через бесконечно удаленную поверхность (в полупространстве обращается в нуль. Это значит, что все силовые линии, проходящие через отверстие, замыкаются на верхней стороне проводящей плоскости.

Распределение зарядов на проводящей плоскости вычисляется следующим образом:

где верхние и нижние знаки относятся к верхней и нижней сторонам плоскости. Согласно формуле

связывающей , на плоскости имеем Таким образом, распределение зарядов на нижней стороне проводящей плоскости дается формулой

При имеем как и должно быть. На верхней же стороне

Полный индуцированный заряд на верхней стороне плоскости конечен и равен

8. То же, если отверстие в проводящей плоскости представляет собой прямую щель ширины 26.

Решение. Плоскость со щелью вдоль оси рассматриваем как предельный случай гиперболического цилиндра

при Эти гиперболические цилиндры представляют собой одно из семейств эллипсоидальных координатных поверхностей при Декартова координата

Как и в задаче 7, ищем решение в виде и для функции получаем

Здесь коэффициент и постоянная интегрирования определяются условиями соответственно, при (т. е. при ), и окончательно получаем

где мы теперь понимаем корень как положительную величину, а верхний и нижний знаки соответствуют областям

На больших расстояниях от щели в верхнем полупространстве имеем и потенциал

т. е. поле двумерного дипольного типа с дипольным моментом на единицу длины щели (см. формулу в задаче 2 § 3).

Распределение зарядов на проводящей плоскости дается формулой

Полный индуцированный заряд на верхней стороне плоскости (отнесенный к единице длины щели) равен

Вблизи края щели в выражении для можно положить

где - полярные координаты в плоскости , отсчитываемые от края щели . Тогда

в согласии с результатом задачи 3 § 3 для случая .

1
Оглавление
email@scask.ru