Главная > Теоретическая физика. Т. VIII. Электродинамика сплошных сред
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 42. Магнитострикция ферромагнетиков

Изменение намагниченности ферромагнетика в магнитном поле приводит к его деформированию (магнитострикция). Это явление может быть связано как с обменными, так и с релятивистскими взаимодействиями в теле. Поскольку обменная энергия зависит лишь от абсолютной величины намагниченности, то и ее изменение может быть связано лишь с изменением величины М в магнитном поле. Хотя последнее, вообще говоря, относительно весьма мало, но, с другой стороны, сама обменная энергия велика по сравнению с энергией анизотропии. Поэтому эффекты магнитострикции, связанные с обоими видами взаимодействий, могут оказаться сравнимыми.

Такое положение имеет место в одноосных кристаллах. Заметные деформации, возникающие от изменения направления М, имеют место в полях изменение же величины М становится существенным при полях Если эти области практически совпадают, то при рассмотрении магнитострикции одноосных ферромагнетиков необходимо, вообще говоря, учитывать оба эффекта вместе. Мы не станем останавливаться здесь на получении соответствующих, довольно сложных формул.

В кубических кристаллах положение иное в связи с относительной малостью энергии анизотропии (как величины четвертого порядка).

Существенная магнитострикция, связанная с изменением направления М, имеет место уже в сравнительно слабых полях, в которых изменением абсолютной величины М можно еще полностью пренебречь. Рассмотрим эти эффекты.

Изменение энергии релятивистских взаимодействий в деформированном теле описывается введением в термодинамический потенциал Ф дополнительных магнитоупругих членов, зависящих от компонент тензора упругих напряжений и от направления вектора М (Н. С. Акулов, 1928). Первые неисчезающие члены такого рода линейны по и квадратичны по направляющим косинусам вектора М (последнее — снова в силу симметрии по отношению к изменению знака времени). В общем случае имеем, следовательно, для магнитоупругой энергии выражение вида

где — безразмерный тензор четвертого ранга, симметричный по парам индексов (но не по отношению к перестановке пары с парой ). Вблизи точки Кюри, где разложение по степеням направляющих косинусов вектора М эквивалентно разложению по степеням его компонент, величины стремятся к постоянным пределам.

При подсчете числа независимых компонент тензора снова следует иметь в виду, что члены в (42,1), содержащие компоненты в комбинации не зависят от направления m и потому могут быть исключены из магнитоупругой энергии. Имея это в виду, найдем, что у кубического кристалла магнитоупругая энергия содержит два независимых коэффициента; запишем ее в виде

(42,2)

Тензор деформации получается дифференцированием Ф по соответствующим компонентам

причем в Ф надо включить (с обратным знаком — см. примечание на стр. 104) также и обычную упругую энергию. У кубического кристалла последняя содержит три независимых упругих коэффициента и может быть представлена, например, в виде

где — положительные величины.

Для тензора деформации получаем

и аналогично для остальных компонент.

Эти формулы содержат в себе все магнитострикционные эффекты (в рассматриваемой области полей). В частности, в отсутствие внутренних напряжений формулы

определяют изменение деформации при изменении направления намагниченности. Напомним, что абсолютная величина деформации в известном смысле условна ввиду условности выбора того направления для которого деформация принимается отсутствующей.

Тензор напряжений, определенный в результате решения конкретной задачи (например, для зажатого кристалла), по порядку величины где а и порядки величины соответственно коэффициентов и упругих коэффициентов. В этом смысле магнитоупругая энергия (как всегда, на единицу объема) — величина порядка Коэффициенты а — величины первого порядка по релятивистскому спин-спиновому взаимодействию, так что магнитоупругая энергия — второго порядка по нему. В одноосном кристалле энергия анизотропии — первого порядка по релятивистскому взаимодействию, и потому как правило велика по сравнению с магнитоупругой энергией. В кубических же кристаллах энергия анизотропии — второго порядка по указанному взаимодействию, и в этом смысле сравнима, вообще говоря, с магнитоупругой энергией. В этой связи может возникнуть необходимость одновременного учета обоих видов энергии (например, при исследовании кривой намагничения), что существенно усложняет задачу.

Рассмотрим теперь магнитострикцию магнетика в таких сильных полях при которых несущественна энергия анизотропии и доменная структура уже отсутствует, так что направление М можно считать совпадающим с направлением Н.

Ввиду пренебрежения энергией анизотропии конкретная симметрия кристалла становится несущественной, так что следующие ниже формулы в равной мере применимы к любому ферромагнетику.

Пусть тело находится в однородном внешнем магнитном поле Его полный термодинамический потенциал дается формулой

где - полный магнитный момент тела, однородно намагниченного в паправлении, совпадающем с направлением поля; мы опустили здесь член не связанный с магнитным полем. Тензор деформации, усредненный по объему тела, определяется формулой

откуда

Таким образом, деформация определяется зависимостью намагниченности от внутренних напряжений.

При кубической симметрии кристалла всякий характеризующий его свойства симметрический тензор второго ранга сводится к скаляру, из которого он получается умножением на Это относится и к тензору так что магнитострикционная деформация сводится в этом случае к всестороннему сжатию или растяжению.

Если мы интересуемся только изменением полного объема тела, то его можно получить просто дифференцированием Ф по давлению:

где Р надо понимать как равномерно приложенное к телу всестороннее давление.

1
Оглавление
email@scask.ru