Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА VI. СВЕРХПРОВОДИМОСТЬ§ 53. Магнитные свойства сверхпроводниковМногие металлы при температурах, близких к абсолютному нулю, переходят в особое состояние, наиболее наглядным свойством которого (открытым Камерлинг-Оннесом; II. Kamerlingh Onnes, 1911) является сверхпроводимость — полное отсутствие электрического сопротивления постоянному току. Возникновение сверхпроводимости происходит при определенной для каждого металла температуре в точке сверхпроводящего перехода, являющегося фазовым переходом второго рода. С точки зрения феноменологической теории, однако, более фундаментальную роль играет изменение магнитных, а не электрических свойств при переходе в сверхпроводящее состояние; мы увидим ниже, что электрические свойства сверхпроводника являются неизбежным следствием его магнитных свойств. Магнитные свойства сверхпроводящего металла можно описать следующим образом. Магнитное поле никогда не проникает в толщу сверхпроводника; поскольку средняя напряженность магнитного поля в среде есть, по определению, магнитная индукция В, то можно иначе сказать, что в толще сверхпроводника всегда
(W. Meissner, R. Ochsenfeld, 1933). Это свойство имеет место независимо от того, в каких условиях фактически произошел переход в сверхпроводящее состояние. Так, если охлаждение образца происходит в магнитном поле, то в момент перехода магнитные силовые линии «выталкиваются» из тела. Подчеркнем, однако, что равенство В = 0 не относится к тонкому поверхностному слою тела. В действительности магнитное поле проникает в сверхпроводник на некоторую глубину, большую по сравнению с междуатомными расстояниями (обычно Ниже мы рассматриваем только массивные сверхпроводники достаточно больших размеров, полностью отвлекаясь от факта проникновения магнитного поля в тонкий поверхностный слой. Как мы знаем, на границе между всякими двумя средами должна быть непрерывной нормальная составляющая индукции (это условие является следствием всегда справедливого уравнения Учитывая это обстоятельство, легко найти силы, действующие на сверхпроводник в магнитном поле. Подобно тому, как это было сделано в § 5 для обычного проводника в электрическом поле, вычисляем силу (отнесенную к 1 см2 поверхности) как
есть максвелловский тензор напряжений для магнитного поля в пустоте. Поскольку в данном случае
т. е. на поверхность тела действует сжимающее давление, по величине равное плотности энергии поля. Согласно уравнению (29,4)
из равенства В = 0 следует, что внутри сверхпроводника средняя плотность тока тоже везде равна нулю. Другими словами, в сверхпроводнике невозможны никакие объемные макроскопические токи. В этой связи подчеркнем, что в сверхпроводнике не имеет смысла выделять из По этой же причине не имеет физического смысла вводить в рассматриваемой теории намагничение М, а с ним и вектор Н. Таким образом, всякий электрический ток, текущий в сверхпроводнике, является поверхностным током. Поверхностная плотность токов g определяется согласно (29,16) скачком касательной компоненты индукции на границе тела. Поскольку внутри сверхпроводника В = 0, а снаружи В и Н совпадают, то
Само по себе наличие поверхностных токов не является характерной особенностью одних только сверхпроводников. Такие же токи возникают и в любом обычном намагничивающемся теле, где их плотность
Поскольку на поверхности нормального (несверхпроводящего) тела непрерывны касательные составляющие вектора
Принципиальная разница между сверхпроводниками и обычными телами выявляется, однако, при рассмотрении полного тока, протекающего через поперечное сечение тела. В сверхпроводящем теле поверхностные токи всегда взаимно компенсируются, так что никакого полного тока не возникает. Эта компенсация обеспечивается условием (53,5), связывающим плотность токов g с магнитной индукцией внутри тела, а посредством нее — токи g в разных местах поверхности. В сверхпроводниках условие (53,5) теряет смысл. Действительно, переход от обычного тела с магнитной проницаемостью Таким образом, мы приходим к результату, что текущие по поверхности сверхпроводника токи могут приводить к протеканию по нему отличного от нуля полного тока. Разумеется, это возможно лишь в многосвязном теле (например, в кольце) или же в односвязном сверхпроводнике, составляющем часть замкнутой цепи с источником электродвижущей силы, необходимой для поддержания тока в несверхпроводящих участках цепи. Очень существенно, что стационарное протекание по сверхпроводнику полного тока оказывается возможным без электрического поля. Это значит, что оно не сопровождается диссипацией энергии, для восполнения которой требовалась бы работа внешнего поля. Это свойство сверхпроводника и может быть описано как отсутствие у него электрического сопротивления, которое оказывается, таким образом, необходимым следствием его магнитных свойств.
|
1 |
Оглавление
|