Главная > Теоретическая физика. Т. VIII. Электродинамика сплошных сред
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 115. Излучение Черенкова

Заряженная частица, движущаяся в прозрачной среде, в определенных условиях испускает своеобразное излучение; оно было впервые наблюдено С. И. Вавиловым и П. А. Черенковым и теоретически истолковано и рассчитано И. Е. Таммом и И. М. Франком (1937). Подчеркнем, что это излучение не имеет ничего общего с фактически всегда имеющим место (при движении быстрого электрона) тормозным излучением. Последнее испускается самим движущимся электроном при его столкновениях с атомами. В явлении же Черенкова мы имеем по существу дело с излучением, испускаемым средой под влиянием поля движущейся в ней частицы. Различие между обоими типами излучений особенно ясно проявляется при переходе к пределу сколь угодно большой массы частицы: тормозное излучение при этом исчезает вовсе, а излучение Черенкова вообще не меняется.

Волновой вектор и частота электромагнитной волны, распространяющейся в прозрачной среде, связаны соотношением , где — вещественный показатель преломления; мы по-прежнему считаем среду немагнитной и изотропной. С другой стороны, мы видели, что частота фурье-компоненты поля равномерно движущейся в среде частицы связана с -компонентой волнового вектора (ось х - в направлении скорости частицы) соотношением

Для того чтобы такая компонента представляла собой свободно распространяющуюся волну, соотношения не должны противоречить друг другу. Поскольку должно быть , то необходимо выполнение условия

(115,1)

Таким образом, излучение с частотой со происходит, если скорость частицы превосходит фазовую скорость волн этой частоты в данной средех).

Пусть — угол между направлением движения частицы и направлением излучения. Имеем и, сравнив с равенством найдем, что

(115,2)

Таким образом, излучению данной частоты соответствует вполне определенное значение угла . Другими словами, излучение каждой частоты происходит вперед по направлению движения частицы и распределяется по поверхности конуса с углом раствора , определяемым формулой (115,2). Угловое распределение излучения и его распределение по частотам находятся, следовательно, в определенной связи друг с другом.

Излучение электромагнитных волн (в тех случаях, когда оно имеет место) связано с определенной потерей энергии движущейся частицей. Эта потеря составляет часть, хотя и незначительную, того полного торможения, которое было вычислено в предыдущем параграфе (тормозное излучение в него не входит). В этом смысле название полных потерь «ионизационные» в данном случае не вполне точно. Выделим теперь эту часть из полных потерь; тем самым мы определим интенсивность излучения Черенкова.

Согласно (114,9) потеря энергии в интервале частот дается выражением

где знак означает, что надо взять сумму выражений с Введем новую переменную

Тогда

При интегрировании вдоль вещественной оси особая точка (как раз соответствующая выполнению соотношения ) должна быть обойдена определенным образом. Направление обхода определяется тем, что хотя мы и считаем вещественной величиной (среда прозрачна!), но в действительности она обладает некоторой, хотя и малой, мнимой частью, положительной при и отрицательной при . Соответственно обладает малой отрицательной (положительной) мнимой частью, и интегрирование должно было бы производиться по пути, проходящему под (над) вещественной осью. Это значит, что, когда мы сместим путь интегрирования на вещественную ось, особая точка должна быть обойдена снизу (сверху). Именно эти обходы и дают вклад в , а вещественные части полностью аннулируются при взятии суммы. Произведя обходы по бесконечно малым полуокружностям, получим

Таким образом, приходим к окончательной формуле

(115,3)

определяющей интенсивность излучения в частотном интервале . Согласно (115,2) это излучение сконцентрировано в интервале углов

(115,4)

Полная интенсивность излучения дается интегралом от выражения (115,3), взятым по всем частотам в области прозрачности среды.

Легко выяснить также вопрос о поляризации излучения Черенкова. Как видно из (114,7), векторный потенциал поля излучения направлен вдоль скорости v. Магнитное поле направлено, следовательно, перпендикулярно к плоскости, проходящей через v и направление луча к. Электрическое же поле (в волновой зоне излучения) перпендикулярно к магнитному и потому лежит в указанной плоскости.

1
Оглавление
email@scask.ru