Главная > Теоретическая физика. Т. VIII. Электродинамика сплошных сред
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 39. Ферромагнетик вблизи точки Кюри

Между магнитными свойствами ферромагнетиков и электрическими свойствами сегнетоэлектриков имеется далеко идущая аналогия, Те и другие обладают, в макроскопических объемах, Спонтанной поляризацией — магнитной или электрической. Исчезновение этой поляризации при изменении температуры в обоих случаях происходит путем фазового перехода второго рода (точку перехода между ферро- и парамагнитной фазами называют точкой Кюри).

В то же время между ферромагнитными и сегнетоэлектрическими явлениями имеются и существенные отличия, связанные с разницей в характере микроскопических сил взаимодействия, приводящих К установлению спонтанной поляризации. У сегнетоэлектриков взаимодействие молекул в кристаллической решетке существенно анизотропно, в результате чего вектор спонтанной поляризации относительно прочно связан с определенными направлениями в кристалле.

Возникновение же магнитной структуры, в том числе ферромагнитной, связано в основном с обменным взаимодействием атомов, которое вообще не зависит от направления суммарного магнитного момента относительно решетки. Правда, наряду с обменным существует также и непосредственное магнитное взаимодействие между атомными магнитными моментами. Это взаимодействие, однако, представляет собой эффект ( — атомные скорости), поскольку сами магнитные моменты атомов содержат множители 1/с. К этой же категории относится и взаимодействие магнитных моментов атомов с электрическим полем кристаллической решетки. Все эти взаимодействия (которые можно назвать релятивистскими ввиду наличия в них множителя ) являются слабыми по сравнению с обменным взаимодействием и, таким образом, приводят лишь к сравнительно слабой зависимости энергии кристалла от направления намагниченности. Такое соотношение между обменным и релятивистскими взаимодействиями будет предполагаться везде ниже в этой главе.

Следовательно, намагниченность ферромагнетика является величиной, которая в первом приближении, т. е. по отношению к основному (обменному) взаимодействию, сохраняется. Это обстоятельство придает более глубокий физический смысл термодинамической теории, в которой намагниченность М рассматривается как независимая переменная, фактическое значение которой (как функции температуры, поля и т. п.) определяется затем соответствующими условиями теплового равновесия.

Обозначим посредством термодинамический потенциал единицы объема вещества, рассматриваемый как функция независимой переменной М (наряду с другими термодинамическими переменными). Будем пока пренебрегать релятивистскими взаимодействиями, т. е. учитывать лишь основное, обменное взаимодействие. Тогда может быть функцией только абсолютной величины, но не направления вектора М.

Для того чтобы найти термодинамические величины при отличном от нуля поле Н, поступаем точно так, как при выводе (19,3): исходим из соотношения и находим

Для потенциала Ф имеем отсюда

При пренебрежении магнитной анизотропией ферромагнетика направления векторов М и Н, разумеется, совпадают; поэтому в формулах (39,1-2) можно писать вместо векторов их абсолютные величины.

Вблизи точки Кюри намагниченность М мала. Рассмотрим свойства ферромагнетика в этой области в рамках общей теории фазовых переходов второго рода Ландау. Следуя этой теории, разложим в ряд по степеням вектора М, играющего роль параметра порядка.

Разложение изотропной функции по степеням векторной величины может содержать лишь члены четных степеней:

где — функции только температуры и давления.

Точка Кюри определяется обращением в нуль коэффициента А, причем при при (такое температурное расположение фаз имеет место во всех известных ферромагнетиках, хотя и не является термодинамически обязательным). Вблизи точки Кюри имеем

где — не зависящая от температуры постоянная. Выражение (39,3-4) отличается от (19,3) лишь смыслом величин: М вместо вместо Поэтому приведем следующие из (39,3-4) выводы, не повторяя всех изложенных в § 19 рассуждений.

Спонтанная намагниченность в ферромагнитной фазе меняется с температурой по закону

Выше точки Кюри спонтанная намагниченность отсутствует, а магнитная восприимчивость равна

т. е. имеет место парамагнетизм с восприимчивостью, обратно пропорциональной (закон Кюри — Вейсса). Ниже точки Кюри имеем

Напомним, однако, что эта величина не является здесь восприимчивостью в обычном смысле слова (т. е. коэффициентом пропорциональности между М и Я), так как при .

Фактически восприимчивость (39,7) может достигать значений порядка единицы лишь в непосредственной близости к точке Кюри. Отвлекаясь от этой области, мы можем считать, что намагниченность М весьма слабо меняется под влиянием магнитного поля и может рассматриваться при заданной температуре как постоянная величина, что и будет предполагаться в следующих параграфах.

И в этом отношении имеется различие между ферромагнетиками и сегнетоэлектриками, у которых вообще говоря, не мало даже вдали от точки Кюри.

Причина снова лежит в малости атомных магнитных моментов по сравнению с электрическими дипольными моментами молекул.

В § 19 было отмечено, что наложение электрического поля размывает дискретную точку фазового перехода второго рода в сегнетоэлектриках. То же самое относится, конечно, и к ферромагнетику в магнитном поле. Поскольку в обменном приближении направления М и Н совпадают, то в этом приближении размытие перехода имеет место при любом кристаллографическом направлении Н.

1
Оглавление
email@scask.ru