Главная > Основы теории цепей
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

13-16. Включение пассивного двухполюсника на напряжение любой формы

В дальнейшем под любой формой напряжения будем понимать его изменение, определяемое кусочно-аналитической функцией, т. е. функцией, аналитически заданной на каждом конечном интервале и имеющей в точках стыка интервалов разрывы непрерывности первого рода.

Рис. 13-29.

Пусть произвольный пассивный двухполюсник подключается к источнику напряжения, кривая изменения которого дана на рис. 13-29. Для вычисления тока определим, как и выше, переходную проводимость

Так как в промежутке включаемое напряжение задано функцией то, воспользовавшись первой формой записи формулы Дюамеля (13-74), можем написать для этого промежутка времени:

    (13-76)

В следующем промежутке напряжение задано другой функцией причем в момент оно изменяется скачком от величины до величины . Для учета скачка напряжения в точке будем считать, что в этот момент к двухполюснику прикладывается отрицательное постоянное напряжение, равное Кроме того, учтем составляющие тока от начального скачка напряжения их (0) и от элементарных скачков напряжения, определяемого кривой и действующего от до

Тогда получим:

    (13-77)

В этом равенстве в третьем члене аргументом переходной проводимости служит величина так как напряжение включается в момент . Аргумент переходной проводимости g в обоих интегралах один и тот же, поскольку он имеет смысл промежутка времени, прошедшего от включения элементарного скачка напряжения А и до рассматриваемого момента времени t (рис. 13-27).

Однако, разумеется, пределы изменения обоих интегралах различны.

Если скачок тока принципиально возможен, то . Тогда скачок напряжения в момент от величины их до величины вызовет, разумеется, и скачок тока

    (13-78)

Если скачка тока быть не может, то и по формуле (13-78) в момент времени также и несмотря на наличие в этот момент скачка напряжения.

Наконец, для промежутка времени учтем, что в момент включается постоянное напряжение и что элементарные скачки, определяемые кривой напряжения действуют до момента времени Поэтому и

    (13-79)

Рациональнее, однако, воспользоваться для решения этой задачи третьей формой записи формулы Дюамеля. Для промежутка времени согласно третьей форме записи формулы Дюамеля имеем:

Сравнивая последнее равенство с (13-76), заключаем, что для этого промежутка времени третья форма записи преимуществ не дает.

Для следующего промежутка времени сначала преобразуем интегрированием по частям входящие в (13-77) интегралы:

Подставляя полученные значения интегралов в (13-77), будем иметь после простых преобразований для промежутка

Здесь внеинтегральный член и интегралы записаны согласно третьей форме записи формулы Дюамеля. Легко видеть, что расчет тока по последней формуле несколько проще его расчета по формуле (13-77), так как в (13-77) нужно учитывать еще одно дополнительное слагаемое ). Разумеется, эти выводы будут правильны, если подынтегральные выражения в (13-77) и в последнем выражении примерно одинаковой сложности.

Аналогично для промежутка

Легко видеть, что расчет тока по этой формуле проще, чем по формуле - (13-79), так как в последней нужно учитывать три дополнительных слагаемых, обусловленных скачками приложенного напряжения в моменты

Преимущества третьей формы Записи формулы Дюамеля тем более ощутимы чем больше разрывов непрерывности первого рода у приложенного напряжения на заданном промежутке его действия.

Рассмотрим, наконец, переходные процессы при включении произвольного активного двухполюсника к напряжению любой формы.

Найдем ток i в любой ветви активного двухполюсника (в частности, и в ветви рубильника). Расчет проведем по принципу наложения. Сначала будем считать двухполюсник пассивным, т. е. учтем только включаемое напряжение и (t). Расчет тока при этом проведем по формулам Дюамеля. Затем учтем только источники активного двухполюсника, т. е. найдем ток в той же ветви при замыкании накоротко зажимов источника напряжения и (t). Расчет тока в этом случае выполним, например, классическим методом (см. § 13-14). Суммируя найденные составляющие токи, получаем искомый ток.

Рис. 13-30.

Отметим еще, что при подаче на вход активного двухполюсника ряда импульсов напряжения (рис. 13-30) расчет токов в любой ветви также можно провести при помощи формулы Дюамеля.

При действии последовательности прямоугольных импульсов расчет можно вести и без применения формулы Дюамеля. В самом деле, для учета действия любого прямоугольного импульса можно считать, что в момент начала его действия включается постоянное напряжение, равное по величине напряжению импульса, а в момент окончания действия импульса включается такое же постоянное напряжение, но противоположное по знаку.

Пример 13-4. Найти ток в индуктивности (рис. 13-31) для промежутков времени если Форма кривой приложенного напряжения задана (рис. 13-32),

Рис. 13-31.

Рис. 13-32.

Решение. Переходную проводимость для ветви с индуктивностью найдем по формуле (13-17)

где

Постоянную времени найдем по формуле (13-16):

Тогда

Уравнение приложенного напряжения (рис. 13-32)

Применяя первую форму записи формулы Дюамеля для промежутка получаем:

Проверяя, убеждаемся, что .

Для промежутка времени записываем:

и получаем:

При ток измениться не должен, несмотря на скачок приложенного напряжения. Проверяя, убеждаемся, что

Кривая тока приведена на рис. 13-33.

Рис. 13-33.

Заметим, что попытка применить для вычисления тока в промежутке вторую форму записи формулы Дюамеля, когда интеграл в правой части равенства (а) был бы заменен интегралом дает неправильный результат. Действительно, из равенства (13-75) следует, что эти интегралы равны только при верхних пределах t. если же верхний предел равен то

откуда и следует для промежутка выражение тока по второй Форме записи формулы Дюамеля:

1
Оглавление
email@scask.ru