Главная > Основы теории цепей
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

10-10. Вращающееся магнитное поле

Одним из основных преимуществ многофазных токов является возможность получения вращающихся магнитных полей, лежащих в основе принципа действия наиболее распространенных типов двигателей переменного тока. Вращающееся магнитное поле было получено физиком Г. Феррарисом в 1884 г., однако он пришел к ошибочному заключению о невыгодности его применения для создания электродвигателей.

В 1887-1888 гг. физик-инженер Н. Тесла сконструировал двухфазный асинхронный двигатель (наименование «асинхронный» будет пояснено в следующем параграфе), а в 1889 г. М. О. Доливо-Добровольский изобрел и построил трехфазный асинхронный двигатель.

Н. Тесла в последующие годы вел работы по внедрению двухфазных двигателей, генераторов и электропередач в США. Одновременно М. О. Доливо-Добровольский разрабатывал все звенья трехфазной системы и внедрял ее в Европе. Подлинным триумфом трехфазного тока явилась установка по передаче энергии на расстояние от Лауфенского водопада до Франкфурта-на-Майне, осуществленная М. О. Доливо-Добровольским в 1891 г. Преимущества трехфазного тока были несомненны, и он быстро получил общее признание и повсеместное применение.

Ознакомимся на простейшем примере с получением вращающегося магнитного поля посредством трехфазной системы токов. Расположим три одинаковые катушки 1, 2 и 3 под углом 120° друг относительно друга. На рис. 10-35, а: они показаны в поперечном разрезе.

Рис. 10-35.

Подключим катушки 1, 2 и 3 соответственно к фазам А, В и С источника питания таким образом, чтобы токи были симметричны (рис. 10-35, б) при показанных на рис. 10-35, а положительных направлениях токов. Рассмотрим схематические картины магнитного поля для различных моментов времени, следующих друг за другом. Пусть первый из рассматриваемых моментов времени соответствует совпадению линии времени с вектором Д. При этом Направления токов в катушках и схематическая картина магнитного поля показаны на рис. 10-36, а, где пунктиром изображены две магнитные линии. Для момента времени, соответствующего положению линии времени, отмеченному цифрой Направления токов в катушках и схематическая картина поля даны на рис. 10-36, б. Далее на рис. 10-36, в и г показаны направления токов и схематические картины поля для моментов времени, соответствующих положениям линии времени 3 и 4. Сопоставление схематических картин магнитного поля, приведенных для различных, следующих друг за другом моментов времени, наглядно показывает вращение магнитного поля. Продолжив анализ, можно убедиться, что в течение одного периода переменного тока магнитное поле таких катушек совершает один полный оборот.

Направление вращения магнитного поля зависит исключительно от последовательности фаз токов в катушках. Если сохранить подключение катушки 1 к фазе А источника питания, катушку 2 подключить к фазе С, а катушку 3 — к фазе В, то направление вращения поля изменится на противоположное. В этом можно убедиться, построив схематические картины магнитного поля для различных моментов времени, аналогично тому, как это было показано выше.

Движущиеся в пространстве магнитные поля, частным случаем которых является рассмотренный пример, широко применяются в различных областях электротехники.

Рис. 10-36.

Для получения движущегося магнитного поля нужно иметь минимум две пространственно смещенные обмотки с несовпадающими по фазе токами.

1
Оглавление
email@scask.ru