Главная > Курс высшей математике, Т.3. Ч.2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

136. Связь сферических функций с предельными задачами.

Сейчас мы укажем на связь теории сферических функций с некоторыми предельными задачами для дифференциальных уравнений. Напишем уравнение Лапласа в сферических координатах [II, 119]:

Будем искать его решение, имеющее вид произведения функции только от на функцию только от в и

Подставим в уравнение (68)

это можно переписать, разделяя переменные, в виде

Левая часть содержит только , а правая только и и обе части должны равняться одной и той же постоянной. Обозначая эту постоянную через , будем иметь два уравнения:

и

где мы для сокращения обозначили

Множитель мы уже знаем, а именно, в силу (5), он должен равняться и, таким образом, наше внимание должно сосредоточиться на уравнении (70). Функция как мы видели, есть тригонометрический полином, и, следовательно, во всяком случае она должна быть конечной и непрерывной на всей единичной сфере, т. е. при любом выборе углов и, в частности, при когда обращается в нуль. Приходим таким образом к следующей предельной задаче: найти такие значения параметра X, при которых уравнение имеет решения, непрерывные на всей единичной сфере, и построить эти решения. Первая часть задачи не представляет никакого труда, ибо мы знаем, что должно равняться и, подставляя это в уравнение (69), получим бесчисленное множество значений параметра , а именно:

При этом уравнение

будет иметь одно решение и второе решение Подставляя в уравнение (70), получим уравнение для сферических функций

В данном случае собственному значению соответствует собственных функций. Это будут сферические функции

порядка . Поскольку сферические функции образуют замкнутую систему на единичной сфере, ими исчерпываются все собственные функции уравнения (70). Подставляя выражения (16) в уравнение (74) и полагая получаем для следующее уравнение второго порядка:

При получается уравнение для полиномов Лежандра Собственные значения и соответствующие собственные функции решают следующую предельную задачу: найти такие значения при которых уравнение (75) имеет решение, которое остается конечным во всем промежутке включая и его концы. Отметим, что уравнение (75) имеет в особых точках определяющее уравнение с корнями

Решение, соответствующее корню обращается в бесконечность в соответствующей особой точке.

Указанная задача сводится к нахождению таких значений при которых решение, принадлежащее корню в точке принадлежало бы тому же корню и в точке

Решением этой задачи и являются значения а соответствующие собственные функции определяются формулой (12).

Свойство ортогональности сферических функций непосредственно связано с тем, что они решают указанную выше предельную задачу для уравнения (70). Совершенно так же функции обладают свойством ортогональности на отрезке

Это доказывается на основании уравнения (75) совершенно так же, как это было сделано в [102] для полиномов Лежандра. Отметим еще один факт, связанный с теорией сферических функций. Если мы используем решение уравнения (73), то получим решение уравнения Лапласа. Это будет гармонический полином степени п. Если мы используем второе решение уравнения (73), то приходим к следующему заключению: функция

где сферическая функция порядка , является решением уравнения Лапласа. Это решение обращается в бесконечность при и не является, конечно, полиномом от х, у, z.

1
Оглавление
email@scask.ru