Главная > Курс высшей математике, Т.3. Ч.2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ГЛАВА VI. СПЕЦИАЛЬНЫЕ ФУНКЦИИ

§ 1. СФЕРИЧЕСКИЕ ФУНКЦИИ И ФУНКЦИИ ЛЕЖАНДРА

130. Определение сферических функций.

В настоящей главе мы будем изучать некоторые специальные классы функций, которые встречаются при интегрировании уравнений математической физики. Все эти функции определяются обычно как решения некоторых линейных уравнений с переменными коэффициентами. В частности, в задаче колебания струны мы встретились с тригонометрическими функциями и в задаче колебания круглой мембраны — с бесселевыми функциями.

Мы начнем с изучения так называемых сферических функций, которые тесно связаны с уравнением Лапласа. Об этом уравнении мы уже много говорили раньше. В декартовых координатах оно имеет вид

Будем искать такие решения этого уравнения, которые имеют вид однородных полиномов переменных у и z.

Начнем с разбора простейших частных случаев. Единственный однородный полином нулевой степени есть произвольная постоянная а, которая, очевидно, удовлетворяет уравнению (1). Общий вид однородных полиномов первой степени будет

Такой полином также удовлетворяет уравнению (1) при любом выборе постоянных коэффициентов . Иначе говоря, мы имеем здесь три линейно независимых решения уравнения (1), а именно х, у и z, и их линейная комбинация с произвольными постоянными коэффициентами дает общее решение уравнения (1), имеющее вид однородного полинома первой степени. Рассмотрим однородные полиномы второй степени

Подставляя в уравнение (1), мы получим одно соотношение для коэффициентов, а именно: . Мы можем, например, считать , и, следовательно, общий вид однородных полиномов второй степени, удовлетворяющих уравнению (1), будет

Здесь мы имеем пять линейно-независимых решений уравнения, а именно и линейная комбинация таких решений с произвольными постоянными коэффициентами дает общее решение уравнения, изображаемое однородным иолиномом второй степени.

Возьмем однородный полином третьей степени

Подставляя в уравнение (1), получим

Приравнивая нулю коэффициенты при , будем иметь три уравнения, связывающих коэффициенты:

так что общий вид решений уравнения (1), имеющих форму однородных полиномов третьей степени, будет

В данном случае мы будем иметь семь линейно-независимых решений уравнения.

Покажем теперь, что в общем случае существует линейно независимых однородных полиномов степени , удовлетворяющих уравнению (1). Займемся подсчетом числа коэффициентов в однородном полиноме и числа уравнений, которым они должны удовлетворять. Однородный полином степени с двумя переменными

содержит коэффициентов. Однородный полином степени с тремя переменными может быть записан в виде

где однородные полиномы степени k. Следовательно, общее число коэффициентов в однородном полиноме (2) будет

При подстановке нолинома (2) в левую часть уравнения (1) получится однородный полином степени , содержащий всего членов. Таким образом, коэффициентов полинома (2) будут связаны однородными уравнениями. Если эти уравнения независимы, то число коэффициентов, остающихся произвольными, будет

что мы и хотели доказать. Но при этом все же остается невыясненным, будут ли упомянутые выше уравнения действительно независимыми. Мы дадим поэтому другое полное доказательство высказанного предложения. Полином (2) мы можем записать в следующей форме:

где, очевидно,

Уравнение (1) можно переписать в виде

Пользуясь этим уравнением, мы можем в выражениях (3) исключить дифференцирование по переменной z выше первого порядка; например, мы можем написать

Таким образом, останутся произвольными лишь те коэффициенты в которых или вовсе нет дифференцирования по z, или где это дифференцирование производится один раз. Это будут коэффициенты: или и их общее число равно как раз что мы и хотели доказать.

1
Оглавление
email@scask.ru