Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
101. Регулярная особая точка.Пусть и — две аналитические функции, линейно независимые между собой. Нетрудно построить линейное уравнение, для которого они будут решениями. Действительно, мы должны иметь
и отсюда без труда определяются коэффициенты уравнения, а именно III, 24]:
и
Положим, что точка
Отсюда
так как частное двух степенных рядов со свободными членами есть также степенной ряд со свободным членом. Дальше имеем
или, производя дифференцирование произведения и вынося за скобки
и, дифференцируя по z, получим
Отсюда
т. e. Из выражения Мы приходим, таким образом, к следующей теореме: Теорема I. Необходимым условием того, чтобы точка порядка, а коэффициент
где Покажем теперь, что это условие не только необходимо, но и достаточно для регулярности особой точки. Напомним, что уравнения вида (34) суть как раз те уравнения, которые мы рассматривали раньше [II, 47] и для которых строили формально решения в виде обобщенного степенного ряда. Но только прежде мы не занимались вопросом о сходимости построенных таким образом рядов. Сейчас мы разберем этот вопрос до конца и докажем, что построенные формально ряды будут сходящимися и будут давать решения уравнения. Для простоты письма будем считать Перепишем уравнение (34), умножая его на
и будем искать решение этого уравнения в следующей форме:
Подставляя это в левую часть уравнения (35) и приравнивая нулю коэффициенты при различных степенях z, получим уравнения для определения коэффициентов
где мы для краткости ввели следующие обозначения:
Как уже упоминалось, можно считать
Это уравнение называется обычно определяющим уравнением в рассматриваемой особой точке. Положим, что корень этого уравнения такой, что при всяком целом положительном
При этом уравнения (37), начиная со второго, дадут нам возможность определить последовательно Пусть R есть круг сходимости рядов, входящих в коэффициенты уравнения (35). Если
где ту и
и, следовательно, взяв
Отношение
при беспредельном возрастании
Из формул (37) имеем
откуда
Далее,
поэтому и подавно
Всегда можно выбрать достаточно большое положительное число Р так, что для первых N коэффициентов будет иметь место оценка
Напомним, что мы считаем
Для остальных коэффициентов, начиная с
или в силу (41)
или, предполагая, что для
Покажем теперь, что
Действительно, это неравенство равносильно следующему:
или
Это последнее непосредственно вытекает из (46). Неравенства (47) и (48) дают
и наше утверждение доказано. Итак, оценки (45) имеют место до значка
Но ряд
наверно абсолютно сходится в круге Таким образом, мы показали, что формула (36) дает действительно решение нашего уравнения в некоторой окрестности точки Если разность корней квадратного уравнения (39) не есть целое число, то для каждого из корней выполнено условие (40), и можно таким образом построить два решения вида (36), причем эти решения будут, очевидно, линейно независимыми Перейдем теперь к разбору такого случая, когда квадратное уравнение (39) имеет одинаковые корни или такие различные корни, разность которых есть целое число. В первом случае, используя единственный корень уравнения, мы построим указанным выше способом одно решение вида (36), и надо будет находить еще второе решение. Обратимся ко второму случаю. Пусть
то в этом уравнении коэффициент Установим теперь вид второго решения, считая вообще, что
где
мы имели формулу, которая дает второе решение уравнения когда известно его одно решение
где С — произвольная постоянная. В данном случае
и
откуда
где, как и выше,
откуда
где
Числа
Отсюда в силу (49)
т. е. подинтегральное выражение в формуле (50) будет
Интегрируя это выражение, получим один логарифмический член
или, в силу (49),
где Необходимость этого условия была нами установлена выше. Заметим, что иногда может случиться, что в регулярной особой точке оба решения не имеют никаких особенностей. Это будет тогда, когда
имеет следующие два линейно независимых решения:
Заметим еще, что если
|
1 |
Оглавление
|