Главная > Квантовая механика, Т.1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 7. Построение пространства состояний путем тензорного умножения более простых пространств

Умея строить пространство для одномерной системы, обладающей классическим аналогом, нетрудно решить ту же задачу для системы, также обладающей классическим аналогом, но уже с числом степеней свободы

В этом случае динамические переменные будут функциями основных переменных положения и импульса. Представляющие их наблюдаемые подчиняются коммутационным соотношениям (6) и (7). Их можно подразделить на N пар каждая из которых состоит из некоторой координаты и соответствующего канонически сопряженного импульса. Каждая пара наблюдаемых коммутирует со всеми наблюдаемыми из других пар.

Наблюдаемые данной пары, например могут рассматриваться как основные наблюдаемые одномерной системы того типа, который изучался в предшествующем параграфе. Мы уже умеем строить пространство состояний такой системы: согласно результатам § 6, образовано линейной суперпозицией ортонормированных кет-векторов причем индекс изменяется непрерывно во всем интервале .

Пространство динамических состояний системы с N степенями свободы получается как тензорное произведение (см. § VII. 6) одномерных пространств

иными словами, это пространство натянуто на кет-векторы

Каждой паре операторов пространства соответствует вполне определенная пара операторов пространства — произведения . Таким образом, для представления основных переменных мы получаем вполне определенных операторов, действующих в 8. Согласно правилам тензорного умножения каждой наблюдаемой парциального пространства соответствует наблюдаемая полного пространства, две наблюдаемые из различных парциальных пространств коммутируют между собой, две наблюдаемые из одного парциального пространства подчиняются в тем же соотношениям коммутации, которым они подчиняются в Следовательно, построенные нами в операторы являются наблюдаемыми и подчиняются коммутационным соотношениям (6) и (7).

Множество векторов получающееся при изменении каждого собственного значения в интервале образует базисную систему в и определяет некоторое представление, а именно представление Полезно выписать в явном виде матричные элементы и в этом представлении. Для этого используем сокращенные обозначения:

Символ обозначает произведение сомножителей, исключая множитель с индексом

Применяя соотношения (17), (18) и (20) из § 6, получим последовательно: условия ортонормированности

матричные элементы (диагональные) координат

и матричные элементы (недиагональные) импульсов

Выполнение коммутационных соотношений (6) и (7) нетрудно проверить, пользуясь приведенными здесь явными выражениями элементов матриц, представляющих и

Любая динамическая переменная системы является функцией поэтому ей соответствует некоторый оператор, вполне определенный в пространстве Следует, конечно, убедиться в том, что этот оператор является наблюдаемой. Однако согласно сделанному выше замечанию этот пункт в квантовой теории обычно принимают без обсуждения.

Метод построения пространства состояний системы путем тензорного умножения более простых пространств имеет самое широкое применение. На практике динамические переменные системы всегда можно представить в виде функций от некоторого числа «основных» переменных, а эти переменные часто можно классифицировать по отдельным подмножествам, так что переменная, принадлежащая одному подмножеству, совместна со всеми переменными других подмножеств. Предположим, например, что нам удалось разделить «основные» переменные на два подмножества и что каждая переменная (1) совместна с каждой переменной (2). Каждое подмножество само по себе определяет парциальную систему, пространство состояний которой мы умеем строить. Пусть и 2 суть пространства состояний, относящиеся к парциальным системам (1) и (2). Тогда очевидно, что пространство состояний полной системы есть тензорное произведение двух парциальных пространств

1
Оглавление
email@scask.ru