Главная > Квантовая механика, Т.1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ГЛАВА III. КВАНТОВЫЕ СИСТЕМЫ В ОДНОМ ИЗМЕРЕНИИ

§ 1. Введение

Чтобы познакомиться ближе с уравнением Шредингера до рассмотрения проблем истолкования и интерпретации квантовой теории, мы изучим волновую механику физических систем в одном измерении. Одномерные задачи интересны не только как простые модели, позволяющие обнаружить некоторые особенности, которые встретятся нам в более сложных случаях, но также и потому, что многие задачи после соответствующих преобразований могут быть сведены к проблеме решения уравнений, аналогичных одномерному уравнению Шредингера.

Рассмотрим частицу массы способную перемещаться по оси х под действием некоторого потенциала Уравнение Шредингера записывается в виде

Мы займемся исследованием стационарных состояний. Если Е есть энергия стационарного состояния, то

причем функция является решением стационарного уравнения Шредингера,

В этой главе мы используем обозначения

что позволяет переписать предшествующее уравнение в форме

Это дифференциальное уравнение Штурма — Лиувилля; мы интересуемся ограниченными, непрерывными и дифференцируемыми его решениями во всем интервале

Если такое решение существует, то всякое другое решение, получаемое умножением на постоянный коэффициент, будет обладать аналогичными свойствами, поэтому мы не будем раз личать решения, отличающиеся на постоянный множитель. Если допустимы два линейно независимых решения, то всякая их линейная комбинация также будет допустимым решением.

В этом случае говорят, что собственное значение имеет вырождение кратности или порядка 2; по определению кратность или порядок вырождения есть число линейно независимых собственных функций, принадлежащих данному собственному значению.

Уравнение (5) вещественно есть вещественная функция Если есть собственная функция, то ее действительная и мнимая части также являются собственными функциями (в случае отсутствия вырождения они отличаются только на постоянный множитель). Поэтому для нахождения всех собственных функций, соответствующих данному собственному значению, достаточно знать все действительные собственные функции. Это замечание существенно упрощает вычисления.

В первом разделе мы рассмотрим точно решаемую задачу на собственные значения в случае некоторых прямоугольных потенциалов. Особенное внимание будет обращено на различия между квантовыми и классическими движениями, а именно на квантование уровней энергии связанных состояний и явления отражения волн, резонанса и прохождения потенциальных барьеров несвязанными «частицами». Во втором разделе мы подвергнем систематическому изучению уравнение (5) для произвольного потенциала Это позволит нам распространить на общий случай некоторые результаты, полученные в первом разделе.

1
Оглавление
email@scask.ru