Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 3. Действие поля напряжений на дислокациюРассмотрим тело, содержащее внутри дислокацию с замкнутой линией С. Тело нагружено объемными
Введем далее
Последний интеграл — по контуру вокруг С, причем направления обхода С и вокруг С согласованы правилом правого винта. Очевидно, что в нагруженном теле с дислокацией
Можно считать, что дислокация находится во внешнем поле напряжений Далее мы обнаружим, что это поле действует на дислокацию некими силами. В соответствии с представлениями лагранжевой механики следует рассмотреть работу
то Для рассматриваемого линейно-упругого тела подходящее выражение потенциала
Достаточно очевидно, что вклад внутренних упругих сил и внешних нагрузок определяется потенциалом Подставив (3.1) в (3.3), получим
Здесь учтено, что Рассматриваемый вопрос неформален, поэтому выскажем еще следующие соображения. Изучая, например, электрическое поле, мы пользуемся пробным зарядом; он должен быть достаточно мал, чтобы вызываемым им возмущением поля можно было пренебречь. Так же и с дислокацией: ее вектор Бюргерса предполагается малым. Собственная энергия дислокации
Рис. 36 Итак, действие поля напряжений на дислокацию определяется потенциалом
Подчеркнутый интеграл берется по поверхности
Элементарная интерпретация этой формулы: при создании дислокации по Вольтерра берег Для определения сил, действующих на дислокацию, следует рассмотреть изменение
Рис. 37 Вектор площадки на
где
Подтвердилось предположение (3.2), получена формула Пича-Келера [117] для силы, действующей на единицу длины линии дислокации. Рассмотрим примеры применения формулы (3.6). Краевая дислокация. В декартовой системе х, у, z орт касательной
Чтобы пояснить этот результат, обратимся к рис. 35. “Лишняя” полуплоскость — в неустойчивом состоянии: сдвигающее напряжение х, “побуждает ее объединиться” с нижней полуплоскость справа; верхняя полуплоскость справа оказывается без продолжения — дислокация передвинулась на период решетки. Так объясняют пластичность металлов. Взаимодействие винтовых дислокаций. В безграничной среде — две параллельных винтовые дислокации: напряжения
Получили центральное взаимодействие. Одноименные дислокации отталкиваются, разноименные — притягиваются. Параллельные краевые дислокации. Поле те создается дислокацией с
Центрального взаимодействия нет, но третий закон Ньютона выполняется, что связано с постоянством энергии
|
1 |
Оглавление
|