Главная > Механика упругих тел
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава 18. МАГНИТОУПРУГОСТЬ

§ 1. Электромагнитное поле

В теории упругости внешние нагрузки обычно считаются заданными. Определение их — самостоятельная задача в своей области. Если в упругом теле протекают электрические токи, то нагрузка создается магнитным полем. При деформации тела магнитное поле меняется; при большой чувствительности поля к деформации становится необходимым совместное решение задач упругости и магнетизма.

Вспомним известные положения теории электромагнетизма. В трехмерном пространстве имеем два векторных поля: электрическое и магнитное Смысл этих векторов ясен из выражения силы, действующей на точечный заряд:

Острый вопрос о том, в какой системе отсчета определяется скорость заряда ведет к специальной теории относительности; останемся в рамках старых классических представлений об абсолютном пространстве как основной системе отсчета.

При непрерывном распределении заряда в пространстве вводятся плотность заряда и вектор плотности тока . В объеме содержится заряд а величина равна заряду, проходящему через площадку в единицу времени (в направлении ). Закон сохранения заряда выражается очевидными соотношениями

В среде с зарядами и токами действуют объемные силы

естественное обобщение (1.1).

Отметим, что все формулы мы пишем в системе единиц как, например, в курсе Фейнмана [105].

Знаменитые уравнения Максвелла имеют вид

где с — скорость света; электрическая постоянная фарад на метр).

Об этих уравнениях прекрасно написано во многих книгах [14, 69, 94, 105]. Заметим сразу, что из первого и четвертого уравнений

Максвелла следует (1.2) — ради этого, быть может, Максвелл и добавил слагаемое в четвертое уравнение.

Третье уравнение в (1.4) позволяет ввести векторный потенциал А:

Он определен с точностью до слагаемого что позволяет ниже задать некоторое “условие калибровки”.

Подставив (1.5) во второе уравнение Максвелла, получим основание для введения скалярного потенциала

Теперь первое и четвертое уравнения примут вид

Принимая условие калибровки

приходим к уравнениям

Это неоднородные волновые уравнения с общей характерной скоростью с. В вакууме отсутствуют, и электромагнитное поле является суперпозицией двух волновых процессов

1
Оглавление
email@scask.ru