Главная > Курс дифференциального и интегрального исчисления. Том 3
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

563. Интеграл Гаусса.

В некоторых вопросах математической физики приходится рассматривать криволинейный интеграл первого типа:

связываемый с именем Гаусса. Здесь через обозначена длина

вектора, соединяющего внешнюю точку с переменной точкой кривой (I) (рис. 25), через — угол между этим вектором и нормалью к кривой в точке М.

Так как точка А неизменна, то подинтегральное выражение представляет собой функцию от координат х, у точки М. Представим интеграл Гаусса в форме криволинейного интеграла второго типа. Если суть углы между положительным направлением оси х и направлениями радиуса-вектора и нормали, то, очевидно,

так что

Подставляя это в интеграл Гаусса, приведем его к виду

Если же воспользоваться формулой (15) п° 353, то и получим искомое выражение интеграла в виде криволинейного интеграла второго типа:

где двойной знак отвечает тому или иному выбору направления нормали.

Функции равно как и их производные, непрерывны во всей плоскости за исключением точки А, где Во всех точках, отличных от А, удовлетворяется условие интегрируемости. Действительно,

так что эти производные равны.

Если кривая (1) замкнута, но не охватывает точки А (и не проходит через нее), то необходимо . Если же замкнутая кривая охватывает точку А, то интеграл Гаусса может быть и отличным от нуля, но, как мы видели в предыдущем его значение должно быть одним и тем же для всех таких кривых. Для выяснения этого значения возьмем в качестве кривой окружность радиуса с центром в точке А. Тогда

(если считать, что нормаль и радиус-вектор имеют одно и то же направление), так что

Итак, для каждой замкнутой кривой внутри которой находится точка А, будет

если нормаль направить во внешнюю сторону, как мы это сделали в случае окружности.

Полученные результаты можно было бы легко предвидеть, если предварительно установить геометрический смысл интеграла Гаусс есть мера угла, под которым видна из точки А кривая (если угол, описываемый радиусом-вектором, идущим из А, при обходе кривой брать со знаком).

Рис. 26.

Для обнаружения этого обстоятельства, предположим сначала, что кривая пересекается с каждым исходящим из А лучом не более чем в одной точке (рис. 26). Пусть, далее, нормаль к кривой направлена в сторону, противоположную точке А, так что

Возьмем на кривой (I) элемент и определим угол, под которым этот элемент виден из точки А. Если М есть (например, начальная) точка этого элемента, то опишем вокруг А окружность радиусом и спроектируем на эту окружность элемент Пусть элемент окружности, который

служит проекцией элемента будет . Так как угол между ними (считая оба элемента приближенно прямолинейными) равен углу то

С другой стороны, очевидно,

где есть центральный угол, отвечающий дуге т. е. именно тот угол, под которым элемент виден из точки А. Отсюда имеем для этого элементарного угла видимости выражение

Наконец, суммируя все элементарные углы, мы получим, что угол видимости для всей кривой как раз и выражается интегралом

Если кривая пересекается лучами, исходящими из точки А, более чем в одной точке, но может быть разбита на части, каждая из которых пересекается этими лучами уже лишь в одной точке, то нужно лишь просуммировать интегралы Гаусса, относящиеся к этим частям.

Выберем на кривой определенное направление, а нормаль будем направлять, например так, чтобы угол между положительно направленной касательной и нею был Тогда в одних частях кривой нормаль окажется направленной в сторону, противоположную точке А, и интеграл Гаусса даст угол видимости с плюсом, в других же частях нормаль будет направлена в сторону точки А, и угол видимости получится с минусом. В общем интеграл Гаусса в этом случае даст алгебраическую сумму углов видимости. Впрочем, именно эту сумму и называют углом видимости для всей кривой (I), понимая, таким образом, под углом видимости полную меру вращения луча зрения от начала к концу кривой.

Рис. 27.

Если кривая замкнута и окружает точку А, то непосредственно ясно, что угол видимости кривой есть . Если же замкнутая кривая не охватывает точку А, то углы видимости, взаимно уничтожаясь благодаря разнице знаков, в сумме дают нуль. Для простого случая, изображенного на рис. 27, кривая распадается на две части: видные из А под одним и тем же углом; но для кривой этот угол получается с плюсом, а для — с минусом.

Все это полностью согласуется со сказанным выше.

Замечание. Геометрическая трактовка интеграла Гаусса позволяет усмотреть, что в случае, когда замкнутая кривая проходит через точку А и в этой точке имеет касательную, значение интеграла будет Если точка А будет угловой и угол между односторонними касательными в ней равен а, то таково же будет и значение интеграла Гаусса. Для аналитического обоснования указанного результата следовало бы сначала выделить из некоторую окрестность точки А, а затем перейти к пределу, сжимая эту окрестность.

1
Оглавление
email@scask.ru