Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
142. Двойные ряды.Рассмотрим прямоугольную таблицу чисел, ограниченную сверху и слева, но уходящую в бесконечность направо и вниз:
Она содержит бесчисленное множество строк, номера которых указываются первым значком, и столбцов, номера которых даются вторым значком при букве и. Таким образом, означает число, стоящее в пересечении Допустим сперва, что все числа Для того чтобы определить понятие о сумме всех чисел таблицы (22), наметим в плоскости чертежа точки с целыми положительными координатами
пересекающих координатные оси в первом координатном углу и подчиненных лишь тому условию, чтобы каждая точка М при достаточно большом
Рис. 157. Составим сумму
или 2) сумма В случае 1) говорят, что двойной ряд
сходится и имеет сумму S. В случае 2) двойной ряд (23) называется расходящимся. Сумма сходящегося ряда (23) с положительными членами не зависит от способа суммирования, т. е. от выбора кривых
т. e. вычислением сперва суммы всех членов каждой строки (или каждого столбца) таблицы, а затем сложением полученных сумм. В самом деле, построим какую-нибудь другую систему кривых
т. е. в силу предыдущего существует конечный предел
Рис. 158. Переменив роли кривых
что возможно лишь при условии
Сумму двойного ряда (23) можно получить, хотя бы взяв за
Мы получим таким путем суммирование
Суммируя же „по диагоналям", получим
Для доказательства формул (24) заметим прежде всего, что сумма какого угодно числа членов таблицы (22) меньше S, а потому и сумма членов, стоящих в любой строке или в любом столбце, также всегда меньше S, откуда вытекает сходимость каждого из рядов
Мы имеем сверх того для любых конечных значений чисел тип:
В самом деле, будем рассматривать только первые
По правилу сложения рядов [119] имеем
так как выражение, стоящее под знаком предела, не больше Аналогичным образом доказывается и второе из неравенств (26). Неравенства (26) показывают, что оба ряда
сходятся и имеют суммы, не превосходящие S, т. е.
С другой стороны, ясно, что при любом выборе системы кривых
при достаточно большом m, т. е.
а потому и в пределе
Ввиду и
что и требовалось доказать. Из двойных рядов с какими угодно членами мы остановимся только на абсолютно сходящихся рядах, т. е. таких, для которых двойной ряд, составленный из абсолютных значений
сходится. Применяя рассуждения, аналогичные рассуждениям [124], можем показать, что и для таких рядов существует сумма
которая также не зависит от способа суммирования и, в частности, может быть получена суммированием по строкам и по столбцам. Замечание. Многие свойства абсолютно сходящихся простых рядов распространяются и на двойные абсолютно сходящиеся ряды; в частности, замечание из [124]: если каждый член двойного ряда по абсолютному значению не превосходит члена сходящегося двойного ряда с положительными членами, то данный ряд абсолютно сходящийся. Точно так же распространяется свойство 2) из [120]. Примеры. 1, Ряд
сходится при
где А и В обозначают сумму рядов
сходящихся при
сходится при
откуда, подставляя вместо
Сходимость ряда 3. Если а и с положительны и
сходится при Пусть сперва
то, обозначив через меньшее из чисел а и с, через
откуда, ограничиваясь единственно интересным случаем
что в силу примеров 1 и 2 и сделанного выше замечания дает сходимость при Пусть теперь
причем
|
1 |
Оглавление
|