Главная > Курс высшей математики, Т.2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

116. Векторное произведение.

Из какой-либо точки О пространства проведем векторы А и В и построим на них параллелограмм. Перпендикуляр в точке О к плоскости построенного параллелограмма имеет два противоположных направления. Одно из этих направлений обладает тем свойством, что для наблюдателя, стоящего вдоль него, направление вектора А может быть переведено в направление вектора В вращением на угол, меньший в ту же сторону, в какую для наблюдателя, стоящего вдоль оси OZ, положительное направление оси ОХ может быть переведено в направление оси OY вращением на угол

На рис. 84 изображено это направление перпендикуляра в случае правой и левой систем координат.

Векторным произведением вектора А на вектор В называется вектор, по величине равный площади параллелограмма, построенного на этих векторах, и по направлению совпадающий с вышеуказанным направлением перпендикуляра к плоскости этого параллелограмма.

Рис. 84.

Векторное произведение вектора А на вектор В обычно обозначают символом . Его величина, согласно предыдущему определению, равна

Его направление эависит от ориентировки координатной системы и при перемене ориентировки переходит в противоположное.

Если векторы А и В имеют одинаковые или противоположные направления, то векторное произведение равно нулю. Вектор, у которого направление зависит от ориентировки осей, как, например, , называется часто псевдовектором. Отметим, что для определения вектора достаточно задать тройку чисел в какой-либо определенной прямоугольной системе координат XYZ. Во всякой друга прямоугольной системе XYZ составляющие поручатся из по формулам преобразования координат. Если XYZ имеют ориентировку, отличную от XYZ, то для псевдовектора надо еще изменить знак у составляющих.

Отметим еще очевидные формулы

Найдем теперь выражение составляющих векторного произведения через составляющие векторов А и В. Принимая во внимание перпендикулярность вектора векторам А в В, можем написать

Воспользуемся следующей элементарной алгебраической леммой, доказательство которой предоставляем читателю:

Лемма. Решение двух однородных уравнений с тремя переменными

имеет вид

где k — произвольный множитель. При этом считается, что хотя бы одна из написанных разностей отлична от нуля. Применяя эту лемму, получим

где надо еще определить. Заметим, что если все три написанные разности равны нулю, то векторы А и В образуют углы или . Воспользуемся для определения тождеством, которое называется обычно тождеством Лагранжа:

справедливость которого нетрудно проверить, раскрывая скобки и его обеих частях. Отметим далее, что есть квадрат длины вектора Р, т. е.

Применяя к левой части тождество Лагранжа, можем переписать это ранена но так:

или, принимая во внимание (4) и (6),

откуда непосредственно следует, что 1.

Докажем, наконец, что 1. Подвергнем векторы А и В непрерывной деформации, которая привела бы вектор А к совпадению

с основным вектором i, а вектор В — к совпадению с основным вектором j. Деформацию можно производить так, что векторы А и В в нуль не обращаются и не бывают параллельны между собой. Тогда векторное произведение А X В, не обращаясь в нуль, также будет непрерывно изменяться и в результате обратится в

так как А совпадает с i и B с j.

Принимая во внимание непрерывность изменения, а также то обстоятельство, что X может иметь лишь два значения можем утверждать, что X вообще не будет меняться при указанной деформации и что, следовательно, значение X после деформации будет таким же, каким оно было и до нее Но после деформации мы будем иметь

и из соотношения

мы можем заключить, что

Мы получаем, таким образом, следующие выражения слагающих векторного произведения А X В:

Пользуясь этими выражениями, читатель без труда проверит справедливость распределительного закона для векторного произведения, т. е. соотношение

С помощью формулы (10) без труда получим отсюда

а затем и более общую формулу:

вполне аналогичную формуле (8) для скалярного произведения.

1
Оглавление
email@scask.ru